LinkedList数据结构链表

LinkedList在Java中是一个实现了ListDeque接口的双向链表。它允许我们在列表的两端添加或删除元素,同时也支持在列表中间插入或移除元素。在分析LinkedList之前,需要理解链表这种数据结构:

  • 链表:链表是一种动态数据结构,由一系列节点组成,每个节点包含数据部分和指向列表中下一个节点的引用。
  • 双向链表:每个节点都有两个链接,一个指向前一个节点,另一个指向后一个节点。

LinkedList 的数据结构

LinkedList中,每个元素都是一个节点,每个节点包含三个部分:存储的数据项、指向前一个节点的引用和指向后一个节点的引用。

java 复制代码
private static class Node<E> {
    E item; // 存储的数据
    Node<E> next; // 指向后一个节点的引用
    Node<E> prev; // 指向前一个节点的引用

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

LinkedList 的核心方法

LinkedList实现了List接口,所以它具有诸如add, remove, get, set等方法,同时也实现了Deque接口,这意味着它也具有offer, poll, push, pop等方法。

源码解析(简化版)

以下是LinkedList中一些关键方法的简化版源码:

java 复制代码
public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable {

    transient int size = 0;
    transient Node<E> first;
    transient Node<E> last;

    public LinkedList() {
    }

    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    public E remove() {
        return unlinkFirst(first);
    }

    private E unlinkFirst(Node<E> f) {
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; 
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

    Node<E> node(int index) {
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    // 省略其他细节实现
}

代码演示

下面是LinkedList的一个简单使用示例:

java 复制代码
import java.util.LinkedList;

public class Main {
    public static void main(String[] args) {
        LinkedList<String> friends = new LinkedList<>();

        // 添加元素
        friends.add("Alice");
        friends.add("Bob");
        friends.add("Charlie");

        // 打印所有元素
        System.out.println("Initial LinkedList: " + friends);

        // 删除第一个元素
        friends.remove();

        // 打印删除元素后的列表
        System.out.println("After removal: " + friends);

        // 获取特定位置的元素
        String friend = friends.get(1);
        System.out.println("Second friend: " + friend);
    }
}

细节分析

使用LinkedList时,有几个细节需要注意:

  • 动态扩展 :由于LinkedList是基于节点的,因此它可以动态地添加或删除节点而不需要像数组那样重新分配整个数据结构。
  • 随机访问效率低 :获取特定索引的元素时,LinkedList必须从头开始(或从尾开始,取决于哪边更近)遍历节点。因此,随机访问的效率远低于数组。
  • 插入和删除效率高 :在任何位置插入或删除元素时,LinkedList只需要改变几个引用,这使得插入和删除操作非常快速。
  • 内存开销 :与数组相比,LinkedList的每个元素都需要额外的内存空间来存储前后节点的引用。

通过以上解析,我们可以深入理解LinkedList的工作原理和设计。这有助于开发者在需要适合的数据结构时作出明智的选择。对于需要频繁插入和删除操作的场景,LinkedList可能是一个不错的选择。然而,如果需要快速通过索引访问元素,那么ArrayList可能是更好的选择。

相关推荐
ada7_22 分钟前
LeetCode(python)——94.二叉
python·算法·leetcode·链表·职场和发展
不穿格子的程序员29 分钟前
从零开始写算法——普通数组类题:数组操作中的“翻转技巧”与“前后缀分解”
数据结构·算法
curry____30333 分钟前
study in PTA(高精度算法与预处理)(2025.12.3)
数据结构·c++·算法·高精度算法
代码游侠1 小时前
学习笔记——栈
开发语言·数据结构·笔记·学习·算法
Ayanami_Reii1 小时前
进阶数据结构应用-维护序列
数据结构·算法·线段树
CoderYanger1 小时前
C.滑动窗口-越长越合法/求最短/最小——2904. 最短且字典序最小的美丽子字符串
java·开发语言·数据结构·算法·leetcode·1024程序员节
别动哪条鱼2 小时前
FFmpeg API 数据结构及其详细说明:
数据结构·ffmpeg·音视频·aac
Ayanami_Reii2 小时前
进阶数据结构-线段树
数据结构·算法·线段树
liu****2 小时前
11.字符函数和字符串函数(一)
linux·运维·c语言·开发语言·数据结构·算法
!chen2 小时前
SQL Server 2025 新功能概览
数据结构