C#,二进制数的非0位数统计(Bits Count)的算法与源代码

计算一个十进制数的二进制表示有多少位1?

1 遍历法(递归或非递归)

使用循环按位统计1的个数。

2 哈希查表法

利用一个数组或哈希生成一张表,存储不同二进制编码对应的值为1的二进制位数,那么在使用时,只需要去进行查询,即可在O(1)的时间复杂度内得到结果。

但是,此算法有个弊端,由于算法是采用空间换取时间的方法,当一个二进制数的位长超过一定限度时,对应的表也就会占据很大的空间,也就是说节约时间越多,花费的存储越多。另外此方法还会收到CPU缓存的限制,如果表太大,表在缓存的上下文切换也就越多,可能会导致性能没有想象中那么高。

所以,为了解决此问题,一般情况下,采用适当的二进制位长度来建表,比如8位、16位,这样情况下,可以对上述问题得到一个平衡,不仅可以享受到优越的性能,而且时间开销也没有遍历法高。

3 Variable-precision SWAR算法

在数学上,我们一般称上述问题为"计算汉明重量",而当前一直效率最好的通用算法为variable-precision SWAR算法,该算法不仅在常数时间计算多个字节的汉明重量,而且不需要使用任何额外的内存。

4 源程序

cs 复制代码
using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
	public static partial class Algorithm_Gallery
	{
		public static int Count_Setbits(int n)
		{
			// initialize the result
			int bitCount = 0;
			for (int i = 1; i <= n; i++)
			{
				bitCount += Count_Setbits_Utility(i);
			}
			return bitCount;
		}

		private static int Count_Setbits_Utility(int x)
		{
			if (x <= 0)
			{
				return 0;
			}
			return (x % 2 == 0 ? 0 : 1) + Count_Setbits_Utility(x / 2);
		}

		public static int Count_Setbits_Second(int n)
		{
			int i = 0;
			int ans = 0;

			while ((1 << i) <= n)
			{
				bool k = false;

				int change = 1 << i;

				for (int j = 0; j <= n; j++)
				{
					ans += (k) ? 1 : 0;
					if (change == 1)
					{
						k = !k;
						change = 1 << i;
					}
					else
					{
						change--;
					}
				}
				i++;
			}
			return ans;
		}

		private static int Leftmost_Bit(int n)
		{
			int m = 0;
			while (n > 1)
			{
				n = n >> 1;
				m++;
			}
			return m;
		}

		private static int Next_Leftmost_Bit(int n, int m)
		{
			int temp = 1 << m;
			while (n < temp)
			{
				temp = temp >> 1;
				m--;
			}
			return m;
		}

		public static int Count_Setbits_Third(int n)
		{
			int m = Leftmost_Bit(n);

			return Count_Setbits_Third_Utility(n, m);
		}

		public static int Count_Setbits_Third_Utility(int n, int m)
		{
			if (n == 0)
			{
				return 0;
			}
			m = Next_Leftmost_Bit(n, m);

			if (n == ((int)1 << (m + 1)) - 1)
			{
				return (int)(m + 1) * (1 << m);
			}
			n = n - (1 << m);
			return (n + 1) + Count_Setbits_Third(n) + m * (1 << (m - 1));
		}
	}
}

POWER BY TRUFFER.CN

BY 315SOFT.COM

相关推荐
好奇龙猫43 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸2 小时前
链表的归并排序
数据结构·算法·链表
jrrz08282 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time2 小时前
golang学习2
算法
南宫生3 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步3 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara4 小时前
函数对象笔记
c++·算法
小码编匠4 小时前
一款 C# 编写的神经网络计算图框架
后端·神经网络·c#