OpenCV DNN 活体检测项目环境配置等各阶段tips


date: 2020-09-22 14:53


资料来源《OpenCV深度学习应用与性能优化实践》第八章。

在复现这个项目的时候发现一些可以调整的小tips。

环境配置阶段

使用conda 创建python 工作环境时,注释掉requirems.txt 里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO 时包含这个了,如果使用requirements 里的版本,imshow 会不可用。

另外安装OpenVINO 后一定要配置环境,指定下面的命令是配置生效,也可以选择加到~/.bashrc 文件里

bash 复制代码
$source /opt/intel/openvino/bin/setupvars.sh
[setupvars.sh] OpenVINO environment initialized

采集数据阶段

涉及文件 gather_examples.py

调整采集数据频率

如果觉得采集的的速度较慢/快,可以采集的时候加--skip 参数 来调整(或者直接修改),此处含义为每16 帧处理一帧。

中断后继续采集数据

如果采集数据的时候中途被迫停止了,继续采集数据想要接上之前的编号,修改:

实时显示采集数据的图片

实时显示color image 和输出的depth face,方便观察数据优劣(距离角度等),方便动态调整。做以下修改:

训练阶段

如果遇到模块找不到的提示,将train/train_FeatherNet.py 需要移到根目录。

默认参数来自 train/cfgs/FeatherNet.yaml,经试验,这里面已经包含的参数,在使用命令训练的时候是不会被覆盖的。比如你想调整训练的最大迭代(epochs)次数,train_FeatherNet.py --epochs 是不会生效的。要么直接改上面的文件,要么注释掉文件里的配置再在训练的时候跟参数。

推理阶段

即demo run 的阶段。

代码中有个bug,活体检测的输入图不是单张人脸,而是整张图,这可能包含多张人脸,于是多张人脸的检测见过其实用的是同一张图,结果也就一样,即同为false 或同为true。

源码地址: https://github.com/hcz017/OpenCV_DNN_face_anti_spoofing

相关推荐
xwz小王子几秒前
Mini3DV 2025 | 观点总结:具身智能前沿与展望
人工智能·3d
学术小白人1 分钟前
JPCS出版| 往届检索可查 | 第四届机械工程与先进制造智能化技术研讨会(MEAMIT 2026)
大数据·人工智能·搜索引擎·能源·制造·ei会议·rdlink研发家
微爱帮监所写信寄信1 分钟前
6G+AI:重构微爱帮监狱写信寄信小程序的特殊通信未来
人工智能·小程序·重构·6g·监狱信件·监狱系统·服刑人员子女
Hello.Reader5 分钟前
Flink ML 迭代机制详解:有界迭代 vs 无界迭代、IterationBody、Epoch 与 API 实战
人工智能·机器学习·flink
超自然祈祷5 分钟前
从数据挖掘到人工智能的脉络地图
人工智能·机器学习·数据挖掘·数据分析
小徐Chao努力6 分钟前
【Langchain4j-Java AI开发】01-快速入门与HelloWorld
人工智能
元智启10 分钟前
企业AI智能体:智能体经济崛起,重构产业价值坐标系——从单点赋能到生态重构的产业革命
大数据·人工智能·重构
tap.AI10 分钟前
(五)Stable Diffusion 3.5-LoRA 适配、ControlNet 与模型微调
人工智能·stable diffusion
攻城狮7号10 分钟前
清华&生数开源TurboDiffusion,AI视频生成2秒出片?
人工智能·ai视频·turbodiffusion·清华及生数·生成加速框架
尋找記憶的魚13 分钟前
pytorch——神经网络框架的搭建以及网络的训练
人工智能·pytorch·神经网络