OpenCV DNN 活体检测项目环境配置等各阶段tips


date: 2020-09-22 14:53


资料来源《OpenCV深度学习应用与性能优化实践》第八章。

在复现这个项目的时候发现一些可以调整的小tips。

环境配置阶段

使用conda 创建python 工作环境时,注释掉requirems.txt 里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO 时包含这个了,如果使用requirements 里的版本,imshow 会不可用。

另外安装OpenVINO 后一定要配置环境,指定下面的命令是配置生效,也可以选择加到~/.bashrc 文件里

bash 复制代码
$source /opt/intel/openvino/bin/setupvars.sh
[setupvars.sh] OpenVINO environment initialized

采集数据阶段

涉及文件 gather_examples.py

调整采集数据频率

如果觉得采集的的速度较慢/快,可以采集的时候加--skip 参数 来调整(或者直接修改),此处含义为每16 帧处理一帧。

中断后继续采集数据

如果采集数据的时候中途被迫停止了,继续采集数据想要接上之前的编号,修改:

实时显示采集数据的图片

实时显示color image 和输出的depth face,方便观察数据优劣(距离角度等),方便动态调整。做以下修改:

训练阶段

如果遇到模块找不到的提示,将train/train_FeatherNet.py 需要移到根目录。

默认参数来自 train/cfgs/FeatherNet.yaml,经试验,这里面已经包含的参数,在使用命令训练的时候是不会被覆盖的。比如你想调整训练的最大迭代(epochs)次数,train_FeatherNet.py --epochs 是不会生效的。要么直接改上面的文件,要么注释掉文件里的配置再在训练的时候跟参数。

推理阶段

即demo run 的阶段。

代码中有个bug,活体检测的输入图不是单张人脸,而是整张图,这可能包含多张人脸,于是多张人脸的检测见过其实用的是同一张图,结果也就一样,即同为false 或同为true。

源码地址: https://github.com/hcz017/OpenCV_DNN_face_anti_spoofing

相关推荐
weixin_395448914 分钟前
排查流程啊啊啊
人工智能·深度学习·机器学习
Acrelhuang15 分钟前
独立监测 + 集团管控 安科瑞连锁餐饮能源方案全链路提效-安科瑞黄安南
人工智能
laplace012326 分钟前
Clawdbot 部署到飞书(飞连)使用教程(完整版)
人工智能·笔记·agent·rag·clawdbot
是小蟹呀^27 分钟前
卷积神经网络(CNN):卷积操作
人工智能·神经网络·cnn
DN202039 分钟前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
爱喝可乐的老王1 小时前
PyTorch简介与安装
人工智能·pytorch·python
deephub1 小时前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
量子-Alex1 小时前
【多模态大模型】Qwen2-VL项目代码初步解析
人工智能
飞鹰511 小时前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer