OpenCV DNN 活体检测项目环境配置等各阶段tips


date: 2020-09-22 14:53


资料来源《OpenCV深度学习应用与性能优化实践》第八章。

在复现这个项目的时候发现一些可以调整的小tips。

环境配置阶段

使用conda 创建python 工作环境时,注释掉requirems.txt 里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO 时包含这个了,如果使用requirements 里的版本,imshow 会不可用。

另外安装OpenVINO 后一定要配置环境,指定下面的命令是配置生效,也可以选择加到~/.bashrc 文件里

bash 复制代码
$source /opt/intel/openvino/bin/setupvars.sh
[setupvars.sh] OpenVINO environment initialized

采集数据阶段

涉及文件 gather_examples.py

调整采集数据频率

如果觉得采集的的速度较慢/快,可以采集的时候加--skip 参数 来调整(或者直接修改),此处含义为每16 帧处理一帧。

中断后继续采集数据

如果采集数据的时候中途被迫停止了,继续采集数据想要接上之前的编号,修改:

实时显示采集数据的图片

实时显示color image 和输出的depth face,方便观察数据优劣(距离角度等),方便动态调整。做以下修改:

训练阶段

如果遇到模块找不到的提示,将train/train_FeatherNet.py 需要移到根目录。

默认参数来自 train/cfgs/FeatherNet.yaml,经试验,这里面已经包含的参数,在使用命令训练的时候是不会被覆盖的。比如你想调整训练的最大迭代(epochs)次数,train_FeatherNet.py --epochs 是不会生效的。要么直接改上面的文件,要么注释掉文件里的配置再在训练的时候跟参数。

推理阶段

即demo run 的阶段。

代码中有个bug,活体检测的输入图不是单张人脸,而是整张图,这可能包含多张人脸,于是多张人脸的检测见过其实用的是同一张图,结果也就一样,即同为false 或同为true。

源码地址: https://github.com/hcz017/OpenCV_DNN_face_anti_spoofing

相关推荐
Lethehong24 分钟前
openEuler AI 图像处理:Stable Diffusion CPU 推理性能优化与评测
人工智能
Guheyunyi28 分钟前
智慧停车管理系统:以科技重塑交通效率与体验
大数据·服务器·人工智能·科技·安全·生活
std8602129 分钟前
微软将允许用户从Windows 11文件资源管理器中移除“AI 动作”入口
人工智能·microsoft
为爱停留31 分钟前
Spring AI实现MCP(Model Context Protocol)详解与实践
java·人工智能·spring
秋刀鱼 ..31 分钟前
第七届国际科技创新学术交流大会暨机械工程与自动化国际学术会议(MEA 2025)
运维·人工智能·python·科技·机器人·自动化
学历真的很重要7 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友7 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何7 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何7 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何7 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能