OpenCV DNN 活体检测项目环境配置等各阶段tips


date: 2020-09-22 14:53


资料来源《OpenCV深度学习应用与性能优化实践》第八章。

在复现这个项目的时候发现一些可以调整的小tips。

环境配置阶段

使用conda 创建python 工作环境时,注释掉requirems.txt 里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO 时包含这个了,如果使用requirements 里的版本,imshow 会不可用。

另外安装OpenVINO 后一定要配置环境,指定下面的命令是配置生效,也可以选择加到~/.bashrc 文件里

bash 复制代码
$source /opt/intel/openvino/bin/setupvars.sh
[setupvars.sh] OpenVINO environment initialized

采集数据阶段

涉及文件 gather_examples.py

调整采集数据频率

如果觉得采集的的速度较慢/快,可以采集的时候加--skip 参数 来调整(或者直接修改),此处含义为每16 帧处理一帧。

中断后继续采集数据

如果采集数据的时候中途被迫停止了,继续采集数据想要接上之前的编号,修改:

实时显示采集数据的图片

实时显示color image 和输出的depth face,方便观察数据优劣(距离角度等),方便动态调整。做以下修改:

训练阶段

如果遇到模块找不到的提示,将train/train_FeatherNet.py 需要移到根目录。

默认参数来自 train/cfgs/FeatherNet.yaml,经试验,这里面已经包含的参数,在使用命令训练的时候是不会被覆盖的。比如你想调整训练的最大迭代(epochs)次数,train_FeatherNet.py --epochs 是不会生效的。要么直接改上面的文件,要么注释掉文件里的配置再在训练的时候跟参数。

推理阶段

即demo run 的阶段。

代码中有个bug,活体检测的输入图不是单张人脸,而是整张图,这可能包含多张人脸,于是多张人脸的检测见过其实用的是同一张图,结果也就一样,即同为false 或同为true。

源码地址: https://github.com/hcz017/OpenCV_DNN_face_anti_spoofing

相关推荐
赋创小助手2 分钟前
超微2U高密度服务器AS-2126HS-TN评测(双AMD EPYC 9005 Turin)
运维·服务器·人工智能·深度学习·神经网络·自然语言处理·架构
AI营销资讯站6 分钟前
AI Marketing Expert赢在2026决胜AI营销的iPhone时刻原圈科技 · 私域AI营销专家
大数据·人工智能
幻云201010 分钟前
Python机器学习:筑基与实践
前端·人工智能·python
ZCXZ12385296a11 分钟前
【深度学习实战】基于YOLO11-ConvNeXtV2的软垫物体检测与分类详解
人工智能·深度学习·分类
wfeqhfxz258878213 分钟前
花椒种植环境中的异物检测与分类:基于QueryInst模型的10类杂质识别
人工智能·分类·数据挖掘
人工智能AI技术19 分钟前
【Agent从入门到实践】18 脚本化编程:批量执行、自动化逻辑
人工智能·python
向量引擎25 分钟前
[硬核架构] 2026 企业级 AI 网关落地指南:从“连接超时”到“秒级响应”的架构演进(附 Python/Java 源码)
人工智能·python·gpt·ai作画·架构·aigc·api调用
Aloudata29 分钟前
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
人工智能·架构·数据挖掘·数据分析·数据治理
OLOLOadsd12334 分钟前
基于改进YOLOv13的长曲棍球角色识别与装备检测系统
人工智能·yolo·目标跟踪
高频交易dragon34 分钟前
An Impulse Control Approach to Market Making in a Hawkes LOB Market从论文到生产
人工智能·算法·机器学习