七、计算机视觉-图像的ROI区域

文章目录


1、什么是ROI

`在计算机视觉中,ROI代表感兴趣区域(Region of Interest),它是指图像或视频中被指定为需要特别关注或处理的区域。ROI可以帮助减少计算量,并且在处理大型图像或视频时可以提高处理效率。

2、ROI如何实现的

假设我们要检测上图中的人物是谁。通常情况下,我们不需要对整张图片进行分析,因为人脸只出现在图片的某个区域。这时,我们可以将该区域指定为ROI,从而只对该区域进行人脸检测和识别,而不必浪费计算资源在图片的其他部分。

具体步骤如下:

  1. 图像加载:加载待处理的图像。
  2. ROI指定:通过人工指定或使用计算机视觉算法找到包含人脸的区域,并将其指定为ROI。
  3. 人脸检测:在ROI中运行人脸检测算法,识别出图像中的人脸。
  4. 人脸识别:对检测到的人脸进行识别,可能通过比对已知的人脸数据库来完成。
  5. 结果显示:将识别结果显示在图像上,或者根据需要采取进一步的操作。
  6. 通过使用ROI,我们可以在人脸检测和识别过程中减少计算量,提高算法的效率,并且更专注于我们感兴趣的区域,从而提高整体处理速度和准确性。

3、一个案例

还是回到刚才的问题假设我们要检测上图中的人物是谁,如何检测人脸并提取 ROI呢

python 复制代码
import cv2

# 加载人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 读取图像
image = cv2.imread('./img/handou.png')

# 将图像转换为灰度图像(人脸检测器需要灰度图像)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 检测人脸
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# 遍历每个检测到的人脸并提取 ROI
for (x, y, w, h) in faces:
    # 在原始图像上绘制矩形框,用于标记检测到的人脸
    cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
    
    # 提取人脸 ROI
    face_roi = image[y:y+h, x:x+w]
    
    # 可以在此处对提取的人脸 ROI 进行进一步处理或保存
    
# 显示结果图像
cv2.imshow('Detected Faces', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

上面代码会标记出人脸部分如下图:


总结

上面代码演示了 使用Haar 特征分类器或基于深度学习的人脸检测器 去检测人脸部分,Haar的使用后面会单独讲到 这里只需要明白ROI区域的概念就行。

相关推荐
Blossom.1181 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E1 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese1 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz1 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin2 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区2 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)2 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1182 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~2 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
hao_wujing2 小时前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测