LeetCode //C - 1268. Search Suggestions System

You are given an array of strings products and a string searchWord.

Design a system that suggests at most three product names from products after each character of searchWord is typed. Suggested products should have common prefix with searchWord. If there are more than three products with a common prefix return the three lexicographically minimums products.

Return a list of lists of the suggested products after each character of searchWord is typed.

Example 1:

Input: products = ["mobile","mouse","moneypot","monitor","mousepad"], searchWord = "mouse"
Output: [["mobile","moneypot","monitor"],["mobile","moneypot","monitor"],["mouse","mousepad"],["mouse","mousepad"],["mouse","mousepad"]]
Explanation: products sorted lexicographically = ["mobile","moneypot","monitor","mouse","mousepad"].

After typing m and mo all products match and we show user ["mobile","moneypot","monitor"].

After typing mou, mous and mouse the system suggests ["mouse","mousepad"].

Example 2:

Input: products = ["havana"], searchWord = "havana"
Output: [["havana"],["havana"],["havana"],["havana"],["havana"],["havana"]]
Explanation: The only word "havana" will be always suggested while typing the search word.

Constraints:
  • 1 <= products.length <= 1000
  • 1 <= products[i].length <= 3000
  • 1 < = s u m ( p r o d u c t s [ i ] . l e n g t h ) < = 2 ∗ 1 0 4 1 <= sum(products[i].length) <= 2 * 10^4 1<=sum(products[i].length)<=2∗104
  • All the strings of products are unique.
  • products[i] consists of lowercase English letters.
  • 1 <= searchWord.length <= 1000
  • searchWord consists of lowercase English letters.

From: LeetCode

Link: 1268. Search Suggestions System


Solution:

Ideas:
  1. Sort the products lexicographically to ensure we can easily pick the top three suggestions.
  2. Iterate through each character of searchWord, building the prefix to search in the sorted products.
  3. Search for products that match the current prefix.
  4. Store up to three matches for each prefix in the result list.
  5. Allocate memory dynamically for the result and intermediate lists, making sure to follow C conventions for memory management.
Caode:
c 复制代码
int cmp(const void* a, const void* b) {
    return strcmp(*(const char**)a, *(const char**)b);
}

char*** suggestedProducts(char** products, int productsSize, char* searchWord, int* returnSize, int** returnColumnSizes) {
    // Sort the products lexicographically
    qsort(products, productsSize, sizeof(char*), cmp);
    
    // Initialize the result array and sizes
    *returnSize = strlen(searchWord);
    char*** result = (char***)malloc(*returnSize * sizeof(char**));
    *returnColumnSizes = (int*)malloc(*returnSize * sizeof(int));
    
    for (int i = 0; i < *returnSize; i++) {
        result[i] = (char**)malloc(3 * sizeof(char*)); // At most 3 suggestions
        int count = 0; // Count of suggestions for this prefix
        for (int j = 0; j < productsSize && count < 3; j++) {
            if (strncmp(products[j], searchWord, i + 1) == 0) {
                result[i][count++] = products[j];
            }
        }
        (*returnColumnSizes)[i] = count; // Set the actual number of suggestions for this prefix
    }
    
    return result;
}
相关推荐
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
时空自由民.9 天前
C++ 不同线程之间传值
开发语言·c++·算法
ai小鬼头9 天前
AIStarter开发者熊哥分享|低成本部署AI项目的实战经验
后端·算法·架构
小白菜3336669 天前
DAY 37 早停策略和模型权重的保存
人工智能·深度学习·算法
zeroporn9 天前
以玄幻小说方式打开深度学习词嵌入算法!! 使用Skip-gram来完成 Word2Vec 词嵌入(Embedding)
人工智能·深度学习·算法·自然语言处理·embedding·word2vec·skip-gram
亮亮爱刷题9 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划
_周游9 天前
【数据结构】_二叉树OJ第二弹(返回数组的遍历专题)
数据结构·算法
双叶8369 天前
(C语言)Map数组的实现(数据结构)(链表)(指针)
c语言·数据结构·c++·算法·链表·哈希算法
安全系统学习9 天前
【网络安全】DNS 域原理、危害及防御
算法·安全·web安全·网络安全·哈希算法
Cyrus_柯9 天前
C++(面向对象编程——继承)
开发语言·c++·算法·面向对象