AIGC基础:大型语言模型 (LLM) 为什么使用向量数据库,嵌入(Embeddings)又是什么?

嵌入:

  • 它是指什么?嵌入是将数据(例如文本、图像或代码)转换为高维向量的数值表示。这些向量捕捉了数据点之间的语义含义和关系。可以将其理解为将复杂数据翻译成 LLM 可以理解的语言。
  • 为什么有用?原始数据之间的相似性反映在高维空间中对应向量之间的距离上。这允许 LLM:
    • 查找相似的数据:通过搜索与查询向量相近的向量,LLM 可以检索与问答、文本生成或推荐系统等任务相关的有用信息。
    • 理解上下文:通过将查询向量与代表过去对话或用户偏好的其他向量进行比较,LLM 可以掌握上下文并个性化其响应。

向量数据库:

  • 为什么需要?传统数据库难以高效地存储和搜索高维向量数据。向量数据库专门用于此目的,提供:
    • 高效存储:它们可以高效地处理大量向量及其相关元数据。
    • 快速相似性搜索:它们使用专用算法快速找到与查询向量最接近的向量,从而实现实时响应。
    • 可扩展性:它们可以有效地处理不断增长的数据集。

对 LLM 的好处:

  • 增强知识库:借助向量数据库,LLM 可以访问和利用超出其训练数据的外部知识,从而改善其响应和能力。
  • 降低计算负载:通过向量搜索检索相关信息,LLM 可以避免处理大量原始数据,从而节省计算资源。
  • 个性化互动:向量数据库允许 LLM 根据存储为向量的个人用户偏好和过去互动来个性化响应。

一些额外的注意事项:

  • 虽然向量数据库具有优势,但并非每个 LLM 应用都需要它。模型的大小和复杂性以及期望的功能决定了是否需要一个。
  • 不同的向量数据库提供不同的功能和性能,需要根据您的特定需求仔细选择。

总而言之,嵌入和向量数据库的结合使 LLM 能够更有效地访问和处理信息,从而实现更丰富、更具上下文感知和个性化的交互。

相关推荐
zzz海羊1 分钟前
【CS336】Transformer|2-BPE算法 -> Tokenizer封装
深度学习·算法·语言模型·transformer
木风小助理1 分钟前
PostgreSQL数据库非常规恢复指南:当数据库无法启动时
数据库·postgresql
咸鱼xxx2 分钟前
N8N搭建Agent(Docker Desktop版本)
docker·ai·容器·agent·n8n
老陈聊架构5 分钟前
『MCP开发工具』Chrome DevTools MCP:AI驱动的浏览器自动化调试实战
chrome·ai·调试·mcp
来两个炸鸡腿5 分钟前
【Datawhale组队学习202601】Base-NLP task02 预训练语言模型
学习·语言模型·自然语言处理
Maggie_ssss_supp8 分钟前
LINUX-MySQL索引管理
数据库
Java开发追求者16 分钟前
Gemini CLI 安装和配置第三方 API 模型
ai·gemini·gemini cli·安装和配置第三方 api 模型
感谢地心引力19 分钟前
【AI】2026 OpenAI 重磅:ChatGPT Go 套餐发布(8美元/月),广告测试同步启动
人工智能·ai·chatgpt·广告
小丁爱养花20 分钟前
Coze 资源
人工智能·microsoft·ai
:mnong20 分钟前
通过交互式的LLM算法可视化工具学习大语言模型原理
学习·算法·语言模型