【LeetCode-213】打家劫舍II(动态规划)

题目链接

目录

题目描述

解法1:动态规划

代码实现


题目链接

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

  • 输入:nums = [2,3,2]

  • 输出:3

  • 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 示例 2:

  • 输入:nums = [1,2,3,1]

  • 输出:4

  • 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 3:

  • 输入:nums = [0]

  • 输出:0

提示:

  • 1 <= nums.length <= 100

  • 0 <= nums[i] <= 1000

解法1:动态规划

这个题和我们昨天做的打家劫舍198题很类似,只是开头结尾不能连在一起,意思就是偷第一家就不能偷最后一家,偷最后一家就不能偷第一家,所以我们直接循环dp两次则可以找出结果,最后返回一个最大的就行!

代码实现
复制代码
class Solution {
    public int rob(int[] nums) {
        int len = nums.length;
        if (len == 1) return nums[0];
​
        int[] dp = new int[len+1];
​
        dp[0] = 0;
        dp[1] = nums[0];
        for (int i = 2; i < len; i++) {
            dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]);
        }
​
        int[] dp2= new int[len+1];
        dp2[0] = 0;
        dp2[1] = 0;
        for (int i = 2; i <= len; i++) {
            dp2[i] = Math.max(dp2[i-1], dp2[i-2]+nums[i-1]);
        }
​
        return Math.max(dp[len-1], dp2[len]);
​
    }
}
相关推荐
君义_noip3 小时前
信息学奥赛一本通 1661:有趣的数列 | 洛谷 P3200 [HNOI2009] 有趣的数列
c++·算法·组合数学·信息学奥赛·csp-s
程序员:钧念3 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
英英_4 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
一起养小猫4 小时前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
hele_two4 小时前
快速幂算法
c++·python·算法
kk哥88995 小时前
如何快速掌握JavaSE的核心语法?
java
我是一只小青蛙8885 小时前
AVL树:平衡二叉搜索树原理与C++实战
java·jvm·面试
浩瀚地学5 小时前
【Java】JDK8的一些新特性
java·开发语言·经验分享·笔记·学习
l1t5 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独