【LeetCode-213】打家劫舍II(动态规划)

题目链接

目录

题目描述

解法1:动态规划

代码实现


题目链接

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

  • 输入:nums = [2,3,2]

  • 输出:3

  • 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 示例 2:

  • 输入:nums = [1,2,3,1]

  • 输出:4

  • 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 3:

  • 输入:nums = [0]

  • 输出:0

提示:

  • 1 <= nums.length <= 100

  • 0 <= nums[i] <= 1000

解法1:动态规划

这个题和我们昨天做的打家劫舍198题很类似,只是开头结尾不能连在一起,意思就是偷第一家就不能偷最后一家,偷最后一家就不能偷第一家,所以我们直接循环dp两次则可以找出结果,最后返回一个最大的就行!

代码实现
复制代码
class Solution {
    public int rob(int[] nums) {
        int len = nums.length;
        if (len == 1) return nums[0];
​
        int[] dp = new int[len+1];
​
        dp[0] = 0;
        dp[1] = nums[0];
        for (int i = 2; i < len; i++) {
            dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]);
        }
​
        int[] dp2= new int[len+1];
        dp2[0] = 0;
        dp2[1] = 0;
        for (int i = 2; i <= len; i++) {
            dp2[i] = Math.max(dp2[i-1], dp2[i-2]+nums[i-1]);
        }
​
        return Math.max(dp[len-1], dp2[len]);
​
    }
}
相关推荐
luoganttcc1 天前
DiffusionVLA 与BridgeVLA 相比 在 精度和成功率和效率上 有什么 优势
人工智能·算法
CoovallyAIHub1 天前
注意力机制不再计算相似性?清华北大新研究让ViT转向“找差异”,效果出奇制胜
深度学习·算法·计算机视觉
烽学长1 天前
(附源码)基于Spring boot的校园志愿服务管理系统的设计与实现
java·spring boot·后端
拾忆,想起1 天前
10分钟通关OSI七层模型:从光纤到APP的奇幻之旅
java·redis·网络协议·网络安全·缓存·哈希算法
失散131 天前
分布式专题——49 SpringBoot整合ElasticSearch8.x实战
java·spring boot·分布式·elasticsearch·架构
CoovallyAIHub1 天前
从图像导数到边缘检测:探索Sobel与Scharr算子的原理与实践
深度学习·算法·计算机视觉
悟能不能悟1 天前
java格式化BigDecimal為#,###,##0.00
java·css·css3
Seven971 天前
剑指offer-36、两个链表的第⼀个公共节点
java
helloworddm1 天前
Java和.NET的核心差异
java·开发语言·.net
SimonKing1 天前
为什么0.1 + 0.2不等于0.3?一次讲透计算机的数学“Bug”
java·数据库·后端