【LeetCode-213】打家劫舍II(动态规划)

题目链接

目录

题目描述

解法1:动态规划

代码实现


题目链接

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

  • 输入:nums = [2,3,2]

  • 输出:3

  • 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 示例 2:

  • 输入:nums = [1,2,3,1]

  • 输出:4

  • 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 3:

  • 输入:nums = [0]

  • 输出:0

提示:

  • 1 <= nums.length <= 100

  • 0 <= nums[i] <= 1000

解法1:动态规划

这个题和我们昨天做的打家劫舍198题很类似,只是开头结尾不能连在一起,意思就是偷第一家就不能偷最后一家,偷最后一家就不能偷第一家,所以我们直接循环dp两次则可以找出结果,最后返回一个最大的就行!

代码实现
复制代码
class Solution {
    public int rob(int[] nums) {
        int len = nums.length;
        if (len == 1) return nums[0];
​
        int[] dp = new int[len+1];
​
        dp[0] = 0;
        dp[1] = nums[0];
        for (int i = 2; i < len; i++) {
            dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]);
        }
​
        int[] dp2= new int[len+1];
        dp2[0] = 0;
        dp2[1] = 0;
        for (int i = 2; i <= len; i++) {
            dp2[i] = Math.max(dp2[i-1], dp2[i-2]+nums[i-1]);
        }
​
        return Math.max(dp[len-1], dp2[len]);
​
    }
}
相关推荐
Gigavision2 分钟前
MMPD数据集 最新Mamba算法 源码+数据集 下载方式
算法
czhc11400756635 分钟前
C# 1221
java·servlet·c#
黄俊懿8 分钟前
【深入理解SpringCloud微服务】Seata(AT模式)源码解析——全局事务的回滚
java·后端·spring·spring cloud·微服务·架构·架构师
Xの哲學11 分钟前
Linux UPnP技术深度解析: 从设计哲学到实现细节
linux·服务器·网络·算法·边缘计算
歌_顿11 分钟前
GPT 系列学习总结(1-3)
算法
派大鑫wink13 分钟前
【Day12】String 类详解:不可变性、常用方法与字符串拼接优化
java·开发语言
业精于勤的牙14 分钟前
最长特殊序列(三)
算法
柏木乃一15 分钟前
进程(6)进程切换,Linux中的进程组织,Linux进程调度算法
linux·服务器·c++·算法·架构·操作系统
皮卡蛋炒饭.15 分钟前
前缀和与差分
算法
JIngJaneIL16 分钟前
基于springboot + vue健康管理系统(源码+数据库+文档)
java·开发语言·数据库·vue.js·spring boot·后端