五、分类算法 总结

代码:

python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def knn_iris():
    # 用KNN 算法对鸢尾花进行分类
    # 1、获取数据
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)
    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)
    return None

def knn_iris_gscv():
    # 用KNN 算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # 1、获取数据
    iris = load_iris()

    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)

    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier()
    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors":[1,3,5,7,9,11]}
    estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)
    estimator.fit(x_train,y_train)

    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)

    # 最佳参数:best_params_
    print("最佳参数:\n",estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n",estimator.best_score_)
    # 最佳估计值:best_estimator_
    print("最佳估计值:\n",estimator.best_estimator_)
    # 交叉验证结果:cv_results_
    print("交叉验证结果:\n",estimator.cv_results_)
    return None

def nb_news():
    # 用朴素贝叶斯算法对新闻进行分类
    # 1、获取数据
    news = fetch_20newsgroups(subset="all")
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
    # 3、特征工程:文本特征抽取-tfidf
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、用朴素贝叶斯算法预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 可视化决策树
    export_graphviz(estimator,out_file="iris_tree.dot",feature_names=iris.feature_names)
    return None

if __name__ == "__main__":
    # 代码1 :用KNN算法对鸢尾花进行分类
    # knn_iris()
    # 代码2 :用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # knn_iris_gscv()
    # 代码3:用朴素贝叶斯算法对新闻进行分类
    # nb_news()
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()
相关推荐
DN202013 小时前
AI销售机器人的隐私痛点与破解之道
人工智能·python·机器学习·机器人·节日
清铎13 小时前
项目_Agent实战
开发语言·人工智能·深度学习·算法·机器学习
沃达德软件13 小时前
视频侦查图像清晰化技术
图像处理·人工智能·目标检测·机器学习·计算机视觉·视觉检测·超分辨率重建
Java后端的Ai之路13 小时前
【RAG技术】- 趣味解读RAG 高效召回秘籍之索引扩展
人工智能·机器学习·rag调优·索引拓展
香芋Yu13 小时前
【机器学习教程】第03章:SVD与矩阵分解
笔记·机器学习·矩阵
minhuan13 小时前
大模型应用:算力分层治理:基于大模型算力四层匹配体系的优化方案.72
人工智能·机器学习·算力的核心构成·算力分层治理
liliangcsdn14 小时前
GRPO优化函数和改进策略的探索分析
人工智能·机器学习
大江东去浪淘尽千古风流人物14 小时前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论
(; ̄ェ ̄)。14 小时前
机器学习入门(十七)朴素贝叶斯
人工智能·机器学习
Yeats_Liao14 小时前
压力测试实战:基于Locust的高并发场景稳定性验证
人工智能·深度学习·机器学习·华为·开源·压力测试