Self-attention与Word2Vec

Self-attention (自注意力)和 Word2Vec 是两种不同的词嵌入技术,用于将单词映射到低维向量空间。它们之间的区别:

  1. Word2Vec

    • Word2Vec 是一种传统的词嵌入(word embedding)方法,旨在为每个单词学习一个全局的向量表示。
    • 它通过分析大量文本数据,将单词映射到一个连续的向量空间中,使得相似的单词在向量空间中距离较近。
    • Word2Vec 忽略了单词在不同上下文中的含义,因此对于多义词(例如,"left"在不同语境中有不同含义)只学习了一个表示。
  2. Self-attention

    • Self-attention 是一种用于序列数据的机制,特别在 Transformer,BERT, GPT模型中广泛应用。
    • 它允许模型根据输入序列的上下文动态调整不同元素的影响。
    • Self-attention 考虑了每个输入元素与其他元素之间的关联度,从而生成不同的表示。
    • 在自然语言处理中,Self-attention 可以根据单词在句子中的上下文生成不同的表示(contextual embedding),解决了多义词的问题。

总之,Word2Vec 是一种全局的词嵌入方法,而Self-attention 允许根据上下文动态生成不同的表示,更适合处理多义词和序列数据。

相关推荐
xidianjiapei00136 分钟前
LLM架构解析:词嵌入模型 Word Embeddings(第二部分)—— 从基础原理到实践应用的深度探索
llm·bert·word2vec·elmo·cbow·llm架构·词嵌入模型
xidianjiapei0011 小时前
构建大语言模型应用:句子转换器(Sentence Transformers)(第三部分)
人工智能·语言模型·自然语言处理·llm·transformer
L_cl1 小时前
【NLP 面经 3】
人工智能·自然语言处理
小白跃升坊2 小时前
如何优化和提高MaxKB回答的质量和准确性?
ai·大语言模型·max kb
Flash Bomb4223 小时前
自然语言处理(20:(第五章5.)进一步改进RNNLM)
人工智能·rnn·语言模型·自然语言处理·lstm
白云千载尽3 小时前
AI时代下的编程——matlib与blender快捷编程化、初始MCP
java·人工智能·大模型·llm·blender
浪漫程序3 小时前
OWL 简明指南:快速上手
人工智能·llm·aigc
Watermelo6176 小时前
Manus使用的MCP协议是什么?人工智能知识分享的“万能插头”
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
Chaos_Wang_14 小时前
NLP高频面试题(二十三)对抗训练的发展脉络,原理,演化路径
人工智能·自然语言处理
风吹草地现牛羊的马16 小时前
mac m1/m2/m3 pyaudio的安装
深度学习·macos·自然语言处理·#pyaudio