8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记
根据loss更新模型参数

1.计算实际输出与目标之间的差距

2.为我们更新输出提供一定的依据(反向传播)

1 MSEloss

python 复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(-1,1,1,3))
targets=torch.reshape(targets,(-1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

tensor(0.6667)
tensor(1.3333)

2 Cross EntropyLoss

python 复制代码
x=torch.tensor([0.1,0.2,0.3])#需要reshape为要求的(batch_size,class)
y=torch.tensor([1])#target已经为要求的batch_size无需reshape
x=torch.reshape(x,(-1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)
print(result_cross)

tensor(1.1019)

3 在具体的神经网络中使用loss

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
for data in dataloader:
    imgs,target=data
    output=han(imgs)
    # print(target)
    # print(output)
    result_loss=loss(output,target)
    print(result_loss)

*tensor([7])

tensor([[ 0.0057, -0.0201, -0.0796, 0.0556, -0.0625, 0.0125, -0.0413, -0.0056,
0.0624, -0.1072]], grad_fn=)...

tensor(2.2664, grad_fn=)...

4 反向传播 优化器

  1. 定义优化器
  2. 将待更新的每个参数梯度清零
  3. 调用损失函数的反向传播函数求出每个节点的梯度
  4. 使用step函数对模型的每个参数调优
python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
optim=torch.optim.SGD(han.parameters(),lr=0.01)

for epoch in range(5):
    running_loss=0.0#一个epoch结束的loss和
    for data in dataloader:
        imgs,target=data
        output=han(imgs)

        result_loss=loss(output,target)#每次迭代的loss
        optim.zero_grad()#将网络中每个可调节参数对应的梯度调为0
        result_loss.backward()#优化器需要每个参数的梯度,使用反向传播获得
        optim.step()#对每个参数调优
        running_loss=running_loss+result_loss
    print(running_loss)

Files already downloaded and verified
tensor(361.0316, grad_fn=)
tensor(357.6938, grad_fn=)
tensor(343.0560, grad_fn=)
tensor(321.8132, grad_fn=)
tensor(313.3173, grad_fn=)

相关推荐
shykevin2 小时前
python开发Streamable HTTP MCP应用
开发语言·网络·python·网络协议·http
漫路在线3 小时前
JS逆向-某易云音乐下载器
开发语言·javascript·爬虫·python
Mr数据杨4 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339864 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
zhz52145 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师5 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
成功人chen某5 小时前
配置VScodePython环境Python was not found;
开发语言·python
武科大许志伟6 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技6 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco6 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos