8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记
根据loss更新模型参数

1.计算实际输出与目标之间的差距

2.为我们更新输出提供一定的依据(反向传播)

1 MSEloss

python 复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(-1,1,1,3))
targets=torch.reshape(targets,(-1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

tensor(0.6667)
tensor(1.3333)

2 Cross EntropyLoss

python 复制代码
x=torch.tensor([0.1,0.2,0.3])#需要reshape为要求的(batch_size,class)
y=torch.tensor([1])#target已经为要求的batch_size无需reshape
x=torch.reshape(x,(-1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)
print(result_cross)

tensor(1.1019)

3 在具体的神经网络中使用loss

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
for data in dataloader:
    imgs,target=data
    output=han(imgs)
    # print(target)
    # print(output)
    result_loss=loss(output,target)
    print(result_loss)

*tensor([7])

tensor([[ 0.0057, -0.0201, -0.0796, 0.0556, -0.0625, 0.0125, -0.0413, -0.0056,
0.0624, -0.1072]], grad_fn=)...

tensor(2.2664, grad_fn=)...

4 反向传播 优化器

  1. 定义优化器
  2. 将待更新的每个参数梯度清零
  3. 调用损失函数的反向传播函数求出每个节点的梯度
  4. 使用step函数对模型的每个参数调优
python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
optim=torch.optim.SGD(han.parameters(),lr=0.01)

for epoch in range(5):
    running_loss=0.0#一个epoch结束的loss和
    for data in dataloader:
        imgs,target=data
        output=han(imgs)

        result_loss=loss(output,target)#每次迭代的loss
        optim.zero_grad()#将网络中每个可调节参数对应的梯度调为0
        result_loss.backward()#优化器需要每个参数的梯度,使用反向传播获得
        optim.step()#对每个参数调优
        running_loss=running_loss+result_loss
    print(running_loss)

Files already downloaded and verified
tensor(361.0316, grad_fn=)
tensor(357.6938, grad_fn=)
tensor(343.0560, grad_fn=)
tensor(321.8132, grad_fn=)
tensor(313.3173, grad_fn=)

相关推荐
阿里云大数据AI技术2 分钟前
云栖实录 | DataWorks 发布下一代 Data+AI 一体化平台,开启企业智能数据新时代
大数据·人工智能
大模型真好玩4 分钟前
低代码Agent开发框架使用指南(五)—Coze消息卡片详解
人工智能·coze·mcp
预测模型的开发与应用研究23 分钟前
贝叶斯统计结合机器学习在术后院内感染危险因素分析中的应用
人工智能·机器学习
RobinMin27 分钟前
Droid CLI 试用体验
人工智能·开源
WWZZ202529 分钟前
快速上手大模型:机器学习6(过拟合、正则化)
人工智能·算法·机器学习·计算机视觉·机器人·slam·具身感知
lzptouch30 分钟前
k-means
人工智能·机器学习·kmeans
智启七月1 小时前
谷歌 Gemini 3.0 正式发布:一键生成 Web OS,编程能力碾压竞品
人工智能·python
Juchecar1 小时前
物质导光导电的微观原理与半导体
人工智能
2401_841495641 小时前
【强化学习】动态规划算法
人工智能·python·算法·动态规划·强化学习·策略迭代·价值迭代
WWZZ20251 小时前
快速上手大模型:机器学习5(逻辑回归及其代价函数)
人工智能·算法·机器学习·计算机视觉·机器人·slam·具身感知