8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记
根据loss更新模型参数

1.计算实际输出与目标之间的差距

2.为我们更新输出提供一定的依据(反向传播)

1 MSEloss

python 复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(-1,1,1,3))
targets=torch.reshape(targets,(-1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

tensor(0.6667)
tensor(1.3333)

2 Cross EntropyLoss

python 复制代码
x=torch.tensor([0.1,0.2,0.3])#需要reshape为要求的(batch_size,class)
y=torch.tensor([1])#target已经为要求的batch_size无需reshape
x=torch.reshape(x,(-1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)
print(result_cross)

tensor(1.1019)

3 在具体的神经网络中使用loss

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
for data in dataloader:
    imgs,target=data
    output=han(imgs)
    # print(target)
    # print(output)
    result_loss=loss(output,target)
    print(result_loss)

*tensor([7])

tensor([[ 0.0057, -0.0201, -0.0796, 0.0556, -0.0625, 0.0125, -0.0413, -0.0056,
0.0624, -0.1072]], grad_fn=)...

tensor(2.2664, grad_fn=)...

4 反向传播 优化器

  1. 定义优化器
  2. 将待更新的每个参数梯度清零
  3. 调用损失函数的反向传播函数求出每个节点的梯度
  4. 使用step函数对模型的每个参数调优
python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
optim=torch.optim.SGD(han.parameters(),lr=0.01)

for epoch in range(5):
    running_loss=0.0#一个epoch结束的loss和
    for data in dataloader:
        imgs,target=data
        output=han(imgs)

        result_loss=loss(output,target)#每次迭代的loss
        optim.zero_grad()#将网络中每个可调节参数对应的梯度调为0
        result_loss.backward()#优化器需要每个参数的梯度,使用反向传播获得
        optim.step()#对每个参数调优
        running_loss=running_loss+result_loss
    print(running_loss)

Files already downloaded and verified
tensor(361.0316, grad_fn=)
tensor(357.6938, grad_fn=)
tensor(343.0560, grad_fn=)
tensor(321.8132, grad_fn=)
tensor(313.3173, grad_fn=)

相关推荐
多米Domi0111 小时前
0x3f 第49天 面向实习的八股背诵第六天 过了一遍JVM的知识点,看了相关视频讲解JVM内存,垃圾清理,买了plus,稍微看了点确定一下方向
jvm·数据结构·python·算法·leetcode
人工智能训练6 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1686 小时前
python性能优化方案研究
python·性能优化
源于花海7 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
码云数智-大飞7 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor8 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19828 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了9 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx9 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队9 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源