8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记
根据loss更新模型参数

1.计算实际输出与目标之间的差距

2.为我们更新输出提供一定的依据(反向传播)

1 MSEloss

python 复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(-1,1,1,3))
targets=torch.reshape(targets,(-1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

tensor(0.6667)
tensor(1.3333)

2 Cross EntropyLoss

python 复制代码
x=torch.tensor([0.1,0.2,0.3])#需要reshape为要求的(batch_size,class)
y=torch.tensor([1])#target已经为要求的batch_size无需reshape
x=torch.reshape(x,(-1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)
print(result_cross)

tensor(1.1019)

3 在具体的神经网络中使用loss

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
for data in dataloader:
    imgs,target=data
    output=han(imgs)
    # print(target)
    # print(output)
    result_loss=loss(output,target)
    print(result_loss)

*tensor([7])

tensor([[ 0.0057, -0.0201, -0.0796, 0.0556, -0.0625, 0.0125, -0.0413, -0.0056,
0.0624, -0.1072]], grad_fn=)...

tensor(2.2664, grad_fn=)...

4 反向传播 优化器

  1. 定义优化器
  2. 将待更新的每个参数梯度清零
  3. 调用损失函数的反向传播函数求出每个节点的梯度
  4. 使用step函数对模型的每个参数调优
python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('dataset',train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
han=Han()
optim=torch.optim.SGD(han.parameters(),lr=0.01)

for epoch in range(5):
    running_loss=0.0#一个epoch结束的loss和
    for data in dataloader:
        imgs,target=data
        output=han(imgs)

        result_loss=loss(output,target)#每次迭代的loss
        optim.zero_grad()#将网络中每个可调节参数对应的梯度调为0
        result_loss.backward()#优化器需要每个参数的梯度,使用反向传播获得
        optim.step()#对每个参数调优
        running_loss=running_loss+result_loss
    print(running_loss)

Files already downloaded and verified
tensor(361.0316, grad_fn=)
tensor(357.6938, grad_fn=)
tensor(343.0560, grad_fn=)
tensor(321.8132, grad_fn=)
tensor(313.3173, grad_fn=)

相关推荐
FserSuN5 小时前
2026年AI工程师指南
人工智能
是枚小菜鸡儿吖5 小时前
CANN 的安全设计之道:AI 模型保护与隐私计算
人工智能
leo03085 小时前
科研领域主流机械臂排名
人工智能·机器人·机械臂·具身智能
薛定谔的猫喵喵5 小时前
天然气压力能利用系统综合性评价平台:基于Python和PyQt5的AHP与模糊综合评价集成应用
开发语言·python·qt
yuluo_YX5 小时前
Reactive 编程 - Java Reactor
java·python·apache
独好紫罗兰5 小时前
对python的再认识-基于数据结构进行-a004-列表-实用事务
开发语言·数据结构·python
ZH15455891315 小时前
Flutter for OpenHarmony Python学习助手实战:模块与包管理的实现
python·学习·flutter
人工智能AI技术5 小时前
GitHub Copilot免费替代方案:大学生如何用CodeGeeX+通义灵码搭建AI编程环境
人工智能
Chunyyyen5 小时前
【第三十四周】视觉RAG01
人工智能·chatgpt
是枚小菜鸡儿吖5 小时前
CANN 算子开发黑科技:AI 自动生成高性能 Kernel 代码
人工智能·科技