LeetCode 2670.找出不同元素数目差数组

给你一个下标从 0 开始的数组 nums ,数组长度为 n 。

nums 的 不同元素数目差 数组可以用一个长度为 n 的数组 diff 表示,其中 diff[i] 等于前缀 nums[0, ..., i] 中不同元素的数目 减去 后缀 nums[i + 1, ..., n - 1] 中不同元素的数目。

返回 nums 的 不同元素数目差 数组。

注意 nums[i, ..., j] 表示 nums 的一个从下标 i 开始到下标 j 结束的子数组(包含下标 i 和 j 对应元素)。特别需要说明的是,如果 i > j ,则 nums[i, ..., j] 表示一个空子数组。

示例 1:

输入:nums = [1,2,3,4,5]

输出:[-3,-1,1,3,5]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 4 个不同的元素。因此,diff[0] = 1 - 4 = -3 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 3 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 3 - 2 = 1 。

对于 i = 3,前缀中有 4 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 4 - 1 = 3 。

对于 i = 4,前缀中有 5 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 5 - 0 = 5 。

示例 2:

输入:nums = [3,2,3,4,2]

输出:[-2,-1,0,2,3]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[0] = 1 - 3 = -2 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 2 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 2 - 2 = 0 。

对于 i = 3,前缀中有 3 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 3 - 1 = 2 。

对于 i = 4,前缀中有 3 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 3 - 0 = 3 。

提示:

1 <= n == nums.length <= 50

1 <= nums[i] <= 50

法一:处理前后缀不同元素数目数组:

cpp 复制代码
class Solution {
public:
    vector<int> distinctDifferenceArray(vector<int>& nums) {
        unordered_set<int> set;
        vector<int> tailDiff(nums.size());
        tailDiff[nums.size() - 1] = 0;
        // 此处要从倒数第二个开始遍历,因为只有一个元素时
        // set.insert(nums[i + 1]);会索引超出
        for (int i = nums.size() - 2; i >= 0; --i)
        {
            if (set.find(nums[i + 1]) == set.end())
            {
                tailDiff[i] = tailDiff[i + 1] + 1;
                set.insert(nums[i + 1]);
            }
            else
            {
                tailDiff[i] = tailDiff[i + 1];
            }
        }

        set.clear();
        vector<int> ans;
        vector<int> preDiff(nums.size());
        for (int i = 0; i < nums.size(); ++i)
        {
            if (set.find(nums[i]) == set.end())
            {
                if (i == 0)
                {
                    preDiff[i] = 1;
                }
                else
                {
                    preDiff[i] = preDiff[i - 1] + 1;
                }
                set.insert(nums[i]);
            }
            else
            {
                preDiff[i] = preDiff[i - 1];
            }

            ans.push_back(preDiff[i] - tailDiff[i]);
        }

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

法二:法一中,前缀数组其实是不需要的,因为第二个for循环中每遍历到一个元素就往set中加,set的大小就是前缀数组的值:

cpp 复制代码
class Solution {
public:
    vector<int> distinctDifferenceArray(vector<int>& nums) {
        unordered_set<int> set;
        vector<int> tailDiff(nums.size());
        tailDiff[nums.size() - 1] = 0;
        // 此处要从倒数第二个开始遍历,因为只有一个元素时
        // set.insert(nums[i + 1]);会索引超出
        for (int i = nums.size() - 2; i >= 0; --i)
        {
            if (set.find(nums[i + 1]) == set.end())
            {
                tailDiff[i] = tailDiff[i + 1] + 1;
                set.insert(nums[i + 1]);
            }
            else
            {
                tailDiff[i] = tailDiff[i + 1];
            }
        }

        set.clear();
        vector<int> ans;
        for (int i = 0; i < nums.size(); ++i)
        {
            set.insert(nums[i]);
            ans.push_back(set.size() - tailDiff[i]);
        }

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

相关推荐
如意猴2 小时前
双向链表----“双轨联动,高效运行” (第九讲)
数据结构·链表
搂鱼1145142 小时前
GJOI 10.7/10.8 题解
算法
Django强哥2 小时前
JSON Schema Draft-07 详细解析
javascript·算法·代码规范
AndrewHZ2 小时前
【图像处理基石】GIS图像处理入门:4个核心算法与Python实现(附完整代码)
图像处理·python·算法·计算机视觉·gis·cv·地理信息系统
杨小码不BUG2 小时前
蛇形舞动:矩阵填充的艺术与算法(洛谷P5731)
c++·算法·矩阵·csp-j/s·循环控制
MicroTech20253 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
Boop_wu4 小时前
[数据结构] Map和Set
java·数据结构·算法
要一起看日出4 小时前
数据结构------二叉查找树
数据结构·二叉查找树
思考的笛卡尔5 小时前
密码学基础:RSA与AES算法的实现与对比
网络·算法·密码学
小许学java9 小时前
数据结构-ArrayList与顺序表
java·数据结构·顺序表·arraylist·线性表