LeetCode 2670.找出不同元素数目差数组

给你一个下标从 0 开始的数组 nums ,数组长度为 n 。

nums 的 不同元素数目差 数组可以用一个长度为 n 的数组 diff 表示,其中 diff[i] 等于前缀 nums[0, ..., i] 中不同元素的数目 减去 后缀 nums[i + 1, ..., n - 1] 中不同元素的数目。

返回 nums 的 不同元素数目差 数组。

注意 nums[i, ..., j] 表示 nums 的一个从下标 i 开始到下标 j 结束的子数组(包含下标 i 和 j 对应元素)。特别需要说明的是,如果 i > j ,则 nums[i, ..., j] 表示一个空子数组。

示例 1:

输入:nums = [1,2,3,4,5]

输出:[-3,-1,1,3,5]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 4 个不同的元素。因此,diff[0] = 1 - 4 = -3 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 3 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 3 - 2 = 1 。

对于 i = 3,前缀中有 4 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 4 - 1 = 3 。

对于 i = 4,前缀中有 5 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 5 - 0 = 5 。

示例 2:

输入:nums = [3,2,3,4,2]

输出:[-2,-1,0,2,3]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[0] = 1 - 3 = -2 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 2 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 2 - 2 = 0 。

对于 i = 3,前缀中有 3 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 3 - 1 = 2 。

对于 i = 4,前缀中有 3 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 3 - 0 = 3 。

提示:

1 <= n == nums.length <= 50

1 <= nums[i] <= 50

法一:处理前后缀不同元素数目数组:

cpp 复制代码
class Solution {
public:
    vector<int> distinctDifferenceArray(vector<int>& nums) {
        unordered_set<int> set;
        vector<int> tailDiff(nums.size());
        tailDiff[nums.size() - 1] = 0;
        // 此处要从倒数第二个开始遍历,因为只有一个元素时
        // set.insert(nums[i + 1]);会索引超出
        for (int i = nums.size() - 2; i >= 0; --i)
        {
            if (set.find(nums[i + 1]) == set.end())
            {
                tailDiff[i] = tailDiff[i + 1] + 1;
                set.insert(nums[i + 1]);
            }
            else
            {
                tailDiff[i] = tailDiff[i + 1];
            }
        }

        set.clear();
        vector<int> ans;
        vector<int> preDiff(nums.size());
        for (int i = 0; i < nums.size(); ++i)
        {
            if (set.find(nums[i]) == set.end())
            {
                if (i == 0)
                {
                    preDiff[i] = 1;
                }
                else
                {
                    preDiff[i] = preDiff[i - 1] + 1;
                }
                set.insert(nums[i]);
            }
            else
            {
                preDiff[i] = preDiff[i - 1];
            }

            ans.push_back(preDiff[i] - tailDiff[i]);
        }

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

法二:法一中,前缀数组其实是不需要的,因为第二个for循环中每遍历到一个元素就往set中加,set的大小就是前缀数组的值:

cpp 复制代码
class Solution {
public:
    vector<int> distinctDifferenceArray(vector<int>& nums) {
        unordered_set<int> set;
        vector<int> tailDiff(nums.size());
        tailDiff[nums.size() - 1] = 0;
        // 此处要从倒数第二个开始遍历,因为只有一个元素时
        // set.insert(nums[i + 1]);会索引超出
        for (int i = nums.size() - 2; i >= 0; --i)
        {
            if (set.find(nums[i + 1]) == set.end())
            {
                tailDiff[i] = tailDiff[i + 1] + 1;
                set.insert(nums[i + 1]);
            }
            else
            {
                tailDiff[i] = tailDiff[i + 1];
            }
        }

        set.clear();
        vector<int> ans;
        for (int i = 0; i < nums.size(); ++i)
        {
            set.insert(nums[i]);
            ans.push_back(set.size() - tailDiff[i]);
        }

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

相关推荐
..Cherry..13 分钟前
Etcd详解(raft算法保证强一致性)
数据库·算法·etcd
商汤万象开发者29 分钟前
LazyLLM教程 | 第13讲:RAG+多模态:图片、表格通吃的问答系统
人工智能·科技·算法·开源·多模态
Lee_yayayayaya1 小时前
本原多项式产生m序列的原理
算法
蒙奇D索大2 小时前
【算法】递归的艺术:从本质思想到递归树,深入剖析算法的性能权衡
经验分享·笔记·算法·改行学it
逐步前行2 小时前
C数据结构--排序算法
c语言·数据结构·排序算法
王哈哈^_^2 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
light_in_hand2 小时前
内存区域划分——垃圾回收
java·jvm·算法
小安同学iter3 小时前
SQL50+Hot100系列(11.7)
java·算法·leetcode·hot100·sql50
_dindong3 小时前
笔试强训:Week-4
数据结构·c++·笔记·学习·算法·哈希算法·散列表
星释3 小时前
Rust 练习册 :Nucleotide Codons与生物信息学
开发语言·算法·rust