MATLAB环境下基于变分贝叶斯的组织学病理图像颜色盲反卷积方法

图像盲反卷积问题仅根据模糊图像估计清晰图像和模糊核,也是一个欠定问题且求解更加困难。但图像盲反卷积算法更实际,因为许多情况下,模糊核都是未知或部分已知的。求解盲反卷积问题需要为未知量选择适当的先验模型,以得到清晰图像和模糊核的确定解。

贝叶斯推理的变分技术的发展遵循两条平行但独立的轨道。早在1987年,Peterson等研究了特定模型的第一个变分过程:神经网络。这篇论文以及统计力学的见解导致了一系列各种各样模型的变分推理程序。1993年,Hinton等为神经网络模型提出了一种变分算法。Dempster等提出变分贝叶斯推断算法与期望最大化算法建立重要的联系,然后导致了针对其他类型模型的多种变分推理算法的出现。

近年来变分贝叶斯推断算法成为了研究者们研究的热点,该算法被广泛用于模型参数的估计以及对模型的选择。目前,变分贝叶斯推断算法在大多数领域的应用有很多研究,例如将该算法应用信息科技、医学等领域。现代变分贝叶斯推理研究主要集中在几个方面:(1)处理涉及海量数据的贝叶斯推理问题;(2)使用改进的优化方法来求解方程最优变分后验分布;(3)开发通用变分贝叶斯推理,将该算法易于应用于各种模型,并提高变分推理的准确性。

鉴于图像盲反卷积和变分贝叶斯方法的优势,提出一种基于变分贝叶斯的组织学病理图像颜色盲反卷积方法,算法运行环境为MATLAB R2018A,压缩包=数据+代码+参考文献。部分代码如下:

复制代码
%% Load image and reference vectors
clc,clear all
I = imread('histWB.jpg');
load 'MLandini' RM;
[m,n,nc] = size(I);
subplot(241),imshow(I)
title('Original H&E Image')
%% Deconvolution
ns=2; %number of stains

epsilon = 2.0e-5;
niter = 1000;

%% Band visualization (OD space)

ns = size(M,2)
concentrations = reshape(CT',m,n,ns);

%figure()
subplot(242),imshow(concentrations(:,:,1))
title('OD H Band')
subplot(246),imshow(concentrations(:,:,2))
title('OD E Band')

%% Band reconstruction (RGB space)
Hrec_OD = reshape((M(:,1)*CT(1,:))',m,n,nc);
Hrec_RGB = OD2intensities(Hrec_OD);

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
ArturiaZ3 分钟前
【day27】
算法
聊聊科技6 分钟前
5款AI编曲软件荣登2026年度榜单,逐项对比适合原创音乐人参考
人工智能
董厂长7 分钟前
RAG 中的分块策略(Chunking Strategy)
人工智能·llm·rag·分块策略
皮卡丘不断更10 分钟前
让数据“开口说话”!SwiftBoot AI 智能看板 v0.1.8 震撼来袭
人工智能·系统架构·ai编程
向哆哆10 分钟前
七种常见虫子的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
AI浩14 分钟前
面向对象保真度的遥感图像生成扩散模型
人工智能·目标检测
CareyWYR16 分钟前
每周AI论文速递(260209-260213)
人工智能
望舒51320 分钟前
代码随想录day32,动态规划part1
java·算法·leetcode·动态规划
楠秋92022 分钟前
代码随想录算法训练营第三十二天| 509. 斐波那契数 、 70. 爬楼梯 、746. 使用最小花费爬楼梯
数据结构·算法·leetcode·动态规划
㓗冽23 分钟前
最大效益(二维数组)-基础题76th + 螺旋方阵(二维数组)-基础题77th + 方块转换(二维数组)-基础题78th
数据结构·算法