深度学习手写字符识别:推理过程

说明

本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。
第一个深度学习实例手写字符识别

深度学习环境配置

可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。
Windows11搭建GPU版本PyTorch环境详细过程

数据集

手写字符识别用到的数据集是MNIST数据集(Mixed National Institute of Standards and Technology database);MNIST是一个用来训练各种图像处理系统二进制图像数据集,广泛应用到机器学习中的训练和测试。

作为一个入门级的计算机视觉数据集,发布20多年来,它已经被无数机器学习入门者应用无数遍,是最受欢迎的深度学习数据集之一。

序号 说明
发布方 National Institute of Standards and Technology(美国国家标准技术研究所,简称NIST)
发布时间 1998
背景 该数据集的论文想要证明在模式识别问题上,基于CNN的方法可以取代之前的基于手工特征的方法,所以作者创建了一个手写数字的数据集,以手写数字识别作为例子证明CNN在模式识别问题上的优越性。
简介 MNIST数据集是从NIST的两个手写数字数据集:Special Database 3 和Special Database 1中分别取出部分图像,并经过一些图像处理后得到的。MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图像都是28×28的灰度图像,每张图像包含一个手写数字。

手写字符识别模型训练

可以参考下篇博客:
深度学习手写字符识别:训练模型

手写字符识别推理过程

  1. 选用训练好的模型output/params_yl.pth

  2. Pycharm运行AI_course/classify_pytorch/test_mnist.py文件,输入的手写字符图片里的数字是"4"。

  3. 推理源码如下:

python 复制代码
import torch
import cv2
from torch.autograd import Variable
from torchvision import transforms
from models.cnn import Net
from toonnx import to_onnx

use_cuda = False
model = Net(10)
# 注意:此处应把pth文件改为你训练出来的params_x.pth,x为epoch编号,
# 一般来讲,编号越大,且训练集(train)和验证集(val)上准确率差别越小的(避免过拟合),效果越好。
model.load_state_dict(torch.load('output/params_yl.pth'))
# model = torch.load('output/model.pth')
model.eval()
if use_cuda and torch.cuda.is_available():
    model.cuda()

#to_onnx(model, 3, 28, 28, 'output/params.onnx')

img = cv2.imread('4_00440.jpg')
img = cv2.resize(img, (28, 28))
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.unsqueeze(0)
if use_cuda and torch.cuda.is_available():
    prediction = model(Variable(img_tensor.cuda()))
else:
    prediction = model(Variable(img_tensor))
pred = torch.max(prediction, 1)[1]
print(prediction)
print(pred)
cv2.imshow("image", img)
cv2.waitKey(0)
  1. 运行结果:打印其张量,可以看到用训练模型output/params_yl.pth的推理后结果,输入一张手下字4,最终推理结果是4;打印出0-9数字的概率,可以看到"4"的概率最高。
  2. 验证推理有效性:为了验证其推理的真实性,重新手写一个手写字符。注意,得和训练集里的字符一样,黑底白字形式。
  • 手写"0",识别出来的是"0"

  • 手写"3",识别出来的是"3"

  • 手写"5",识别出来的是"7",可以看到识别错了。

  1. 验证推理结果,额外手写了3个字符,未使用测试集里的手写字符验证,对了2个,错了1个;识别率有待提高,可能需要更多次的epoch。

后续

  • 下一篇章跟着视频进行手写字符识别的代码解析。
相关推荐
羑悻的小杀马特28 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi3 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
byxdaz7 小时前
PyTorch中Linear全连接层
pytorch
Start_Present7 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm