pytorch张量创建、张量复制

pytorch张量创建、张量复制

首先注意一点:在torch中,可导张量计算出的新张量也是可导的,新张量与原张量具有可导连接,那么原张量就不是叶子张量,新张量成了叶子张量。

创建方式一:torch.tensor()

torch.tensor(data , *, dtype=None , device=None , requires_grad=False , pin_memory=False ) → Tensor

torch.tensor只能从指定的数据创建,但是可以指定数据属性,是否可微分等属性。pin_memory是将张量放置到锁业内存中,所以这个张量只能被cpu使用。

python 复制代码
import torch
a = [1, 2, 3]
b = torch.tensor(a, requires_grad=True, dtype=torch.float64)
创建方式二:torch.Tensor

按照形状创建,如果输入列表,就按照指定数据创建。

整数:torch.ShortTensor 16位,torch.IntTensor 32位,torch.LongTensor 64位

浮点:torch.FloatTensor=torch.Tensor 32位,torch.DoubleTensor 64位

注意:torch.Tensor(int1, int2,int3)会创建[int1, int2,int3]形状的张量,如果传入列表元组等,就会返回该列表元组张量。

python 复制代码
import torch
torch.Tensor(3) 
'''tensor([-2.6853e+05,  1.9983e-42,  2.3694e-38])'''
torch.Tensor(3, 1) 
'''
tensor([[3.2842e-15],
        [3.1714e+00],
        [2.3694e-38]])
'''
torch.Tensor([3, 1])
'''
tensor([3., 1.])
'''
同设备内复制 - tensor.data /tensor.detach()/tensor.clone的区别

这三个单独会用都会和原张量有牵扯:

  1. tensor.data和tensor.detach():随着原张量的数值变化而变化。剥离开了原张量的微分图。
  2. tensor.clone() : 还处于原张量的微分图中。复制了原张量的数值。也就是tesnor.clone().bachward()后,原张量的微分图会进行一次反向传导。
  3. 完全没牵扯:tensor.clone().detach()

举例:

python 复制代码
import torch

a = torch.tensor(1, requires_grad=True, dtype=torch.float32)
b = a * 2

b_data = b.data
b_detach = b.detach()
b_clone = b.clone()
print(b, b_data, b_detach, b_clone)
'''
tensor(2., grad_fn=<MulBackward0>) tensor(2.) tensor(2.) tensor(2., grad_fn=<CloneBackward0>)
'''
# 当其中一个改变时,tensor.data, tensor.detach也会改变。tensor.clone不会改变。
b_detach.zero_()
print(b, b_data, b_detach, b_clone)
'''
tensor(0., grad_fn=<MulBackward0>) tensor(0.) tensor(0.) tensor(2., grad_fn=<CloneBackward0>)
'''

当tensor.detach或者tensor.data改变数值时,并不会影响原张量的微分传导结果。

python 复制代码
import torch

a = torch.tensor(1, requires_grad=True, dtype=torch.float32)
b = a * 2

b_data = b.data
b_detach = b.detach()
b_clone = b.clone()

# a的微分结果不受影响
b_detach.zero_()
b.backward(retain_graph=True)
print(a.grad)

# 如果原张量本身变化,则会受到影响。
b.zero_()
a.grad.zero_()
b.backward()
print(a.grad)
'''
tensor(2.)
tensor(0.)
'''

tensor.clone会保持原张量的微分传导图,并会叠加到结果上。

python 复制代码
import torch

a = torch.tensor(1, requires_grad=True, dtype=torch.float32)
b = a * 2

b_clone = b.clone()

b.backward(retain_graph=True)
print(a.grad)
b_clone.backward()
print(a.grad)
'''
tensor(2.)
tensor(4.)
'''
跨设备复制

方法很多,实际使用就用以下这种:

python 复制代码
device = "cuda:0" if torch.cuda.is_available() else "cpu"
temp = torch.tensor(2)
temp.to(deivce) # 如果有gpu就放到gpu.
temp = temp.cpu() # 复制到cpu上
相关推荐
china10003 分钟前
大模型系列(五)--- GPT3: Language Models are Few-Shot Learners
人工智能·语言模型·gpt-3
学地理的小胖砸6 分钟前
【Python 模块】
开发语言·python
hkNaruto10 分钟前
【AI】模型与权重的基本概念
人工智能
蜂耘41 分钟前
奇瑞依托汽车产业链,实现服务机器人万台下线
人工智能·汽车
每天都要写算法(努力版)43 分钟前
【神经网络与深度学习】VAE 中的先验分布指的是什么
人工智能·深度学习·神经网络
jndingxin1 小时前
OpenCV 中用于背景分割的一个类cv::bgsegm::BackgroundSubtractorGMG
人工智能·opencv·计算机视觉
格林威1 小时前
Baumer工业相机堡盟工业相机如何通过BGAPI SDK在Linux系统下设置多个USB相机(C++)
linux·c++·人工智能·数码相机·计算机视觉
Ylinnnnn1 小时前
初始图形学(7)
人工智能·数码相机·计算机视觉
jie188945758661 小时前
python--------修改桌面文件内容
java·数据库·python
2501_915374351 小时前
深入理解 TensorFlow 的模型保存与加载机制(SavedModel vs H5)
人工智能·tensorflow