使用R语言进行Logistic回归分析(2)

一、数据集描述,问题要求

下表是40位肺癌病人的生存资料,X1表示生活行为能力平分(1到100),X2为病人的年龄(年),X3由诊断到进入研究的时间(月),X4表示肿瘤的类型('0'表示鳞瘤,'1'表示小型细胞癌,'3'表示腺癌,'4'表示大型细胞癌)X5表示化疗的方法('1'表示常规,'0'表示试验新法);Y表示病人的生存时间('0'表示生存时间短,'生存时间小于200天,'1'表示生存时间长,生存时间大于等于200天)

要求:1、建立E(y)=P(Y=1)对X1-X5的Logistic回归模型,并进行参数显著性检验和预测。

二、根据数据集,建立Logistic回归模型,并进行分析

x1<-c(70,60,70,40,40,70,70,80,60,30,80,40,60,40,20,50,50,40,80,70,60,90,50,70,20,80,60,50,

70,40,30,30,40,60,80,70,30,60,80,70)

x2<-c(64,63,65,69,63,48,48,63,63,53,43,55,66,67,61,63,66,68,41,53,37,54,52,50,65,52,70,40,36,44,54,59,69,50,62,68,39,49,64,67)

x3<-c(5,9,11,10,58,9,11,4,14,4,12,2,25,23,19,4,16,12,12,8,13,12,8,7,21,28,13,13,22,36,9,87,5,22,4,15,4,11,10,18)

x4<-c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,0,0,0,0,0)

x5<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

y<-c(1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1)

df<-data.frame(x1,x2,x3,x4,x5,y)

log.glm<-glm(y~x1+x2+x3+x4+x5,family = binomial,data=df)

summary(log.glm)

运行得到:

从回归结果可以看到,系数只有一个是显著的,即病人的生活行为能力X1对p(Y=1)的影响是显著的,其余系数没通过检验。

三、使用逐步回归法,筛选出合适变量并找到最优的回归方程

log.step<-step(log.glm)

summary(log.step)

运行得到:

复制代码
> log.step<-step(log.glm)
Start:  AIC=40.39
y ~ x1 + x2 + x3 + x4 + x5

       Df Deviance    AIC
- x3    1   28.484 38.484
- x2    1   28.484 38.484
- x5    1   28.799 38.799
<none>      28.392 40.392
- x4    1   32.642 42.642
- x1    1   38.306 48.306

Step:  AIC=38.48
y ~ x1 + x2 + x4 + x5

       Df Deviance    AIC
- x2    1   28.564 36.564
- x5    1   28.993 36.993
<none>      28.484 38.484
- x4    1   32.705 40.705
- x1    1   38.478 46.478

Step:  AIC=36.56
y ~ x1 + x4 + x5

       Df Deviance    AIC
- x5    1   29.073 35.073
<none>      28.564 36.564
- x4    1   32.892 38.892
- x1    1   38.478 44.478

Step:  AIC=35.07
y ~ x1 + x4

       Df Deviance    AIC
<none>      29.073 35.073
- x4    1   33.535 37.535
- x1    1   39.131 43.131
复制代码
> summary(log.step)

Call:
glm(formula = y ~ x1 + x4, family = binomial, data = df)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) -6.13755    2.73844  -2.241   0.0250 *
x1           0.09759    0.04079   2.393   0.0167 *
x4          -1.12524    0.60239  -1.868   0.0618 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 44.987  on 39  degrees of freedom
Residual deviance: 29.073  on 37  degrees of freedom
AIC: 35.073

Number of Fisher Scoring iterations: 6

使用逐步回归法得到了最终的回归方程,此时已经剔除了变量X2,X3,X5,只保留变量X1,X4,从回归方程的检验结果来看,系数是显著性得到了提高。

最终的回归方程为:

p=exp(-6.13755+0.09759x1-1.12524x4)/(1+exp(-6.13755+0.09759x1-1.12524x4))

使用该回归方程对,对40位病人生存时间较长的概率(Y=1)进行拟合和预测。

复制代码
> log.pre<-predict(log.step)
> p<-exp(log.pre)/(1+exp(log.pre))
> p
运行得到各病人的生存时间较长的概率p(Y=1):
  

从而得到最终的生存时间较长的概率的拟合值。

相关推荐
西柚小萌新11 分钟前
【深度学习:进阶篇】--2.4.BN与神经网络调优
人工智能·深度学习·神经网络
金融小师妹14 分钟前
解码美元-黄金负相关:LSTM-Attention因果发现与黄金反弹推演
大数据·人工智能·算法
DZSpace18 分钟前
AI Agent 核心策略解析:Function Calling 与 ReAct 的设计哲学与应用实践
人工智能·大模型
小郑00121 分钟前
智能体还能配置MCP?智灵助理:打造智能交互新时代的全能助手
人工智能
AI大模型技术社25 分钟前
神经网络学习路线图:从感知机到Transformer的认知跃迁
人工智能
黄卷青灯7737 分钟前
把下载的ippicv.tgz放入<opencv_build_dir>/3rdparty/ippicv/download/中cmake依然无法识别
人工智能·opencv·计算机视觉·ippicv
程序员老刘1 小时前
MCP:新时代的API,每个程序员都应该掌握
人工智能·flutter·mcp
Humbunklung1 小时前
全连接层和卷积层
人工智能·python·深度学习·神经网络·机器学习·cnn
广州山泉婚姻1 小时前
解锁高效开发:Spring Boot 3和MyBatis-Flex在智慧零工平台后端的应用实战
人工智能·spring boot·spring
三花AI1 小时前
Higgsfield AI 整合 Flux.1 Kontext:一站式创意工作流解决方案
人工智能