使用R语言进行Logistic回归分析(2)

一、数据集描述,问题要求

下表是40位肺癌病人的生存资料,X1表示生活行为能力平分(1到100),X2为病人的年龄(年),X3由诊断到进入研究的时间(月),X4表示肿瘤的类型('0'表示鳞瘤,'1'表示小型细胞癌,'3'表示腺癌,'4'表示大型细胞癌)X5表示化疗的方法('1'表示常规,'0'表示试验新法);Y表示病人的生存时间('0'表示生存时间短,'生存时间小于200天,'1'表示生存时间长,生存时间大于等于200天)

要求:1、建立E(y)=P(Y=1)对X1-X5的Logistic回归模型,并进行参数显著性检验和预测。

二、根据数据集,建立Logistic回归模型,并进行分析

x1<-c(70,60,70,40,40,70,70,80,60,30,80,40,60,40,20,50,50,40,80,70,60,90,50,70,20,80,60,50,

70,40,30,30,40,60,80,70,30,60,80,70)

x2<-c(64,63,65,69,63,48,48,63,63,53,43,55,66,67,61,63,66,68,41,53,37,54,52,50,65,52,70,40,36,44,54,59,69,50,62,68,39,49,64,67)

x3<-c(5,9,11,10,58,9,11,4,14,4,12,2,25,23,19,4,16,12,12,8,13,12,8,7,21,28,13,13,22,36,9,87,5,22,4,15,4,11,10,18)

x4<-c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,0,0,0,0,0)

x5<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

y<-c(1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1)

df<-data.frame(x1,x2,x3,x4,x5,y)

log.glm<-glm(y~x1+x2+x3+x4+x5,family = binomial,data=df)

summary(log.glm)

运行得到:

从回归结果可以看到,系数只有一个是显著的,即病人的生活行为能力X1对p(Y=1)的影响是显著的,其余系数没通过检验。

三、使用逐步回归法,筛选出合适变量并找到最优的回归方程

log.step<-step(log.glm)

summary(log.step)

运行得到:

复制代码
> log.step<-step(log.glm)
Start:  AIC=40.39
y ~ x1 + x2 + x3 + x4 + x5

       Df Deviance    AIC
- x3    1   28.484 38.484
- x2    1   28.484 38.484
- x5    1   28.799 38.799
<none>      28.392 40.392
- x4    1   32.642 42.642
- x1    1   38.306 48.306

Step:  AIC=38.48
y ~ x1 + x2 + x4 + x5

       Df Deviance    AIC
- x2    1   28.564 36.564
- x5    1   28.993 36.993
<none>      28.484 38.484
- x4    1   32.705 40.705
- x1    1   38.478 46.478

Step:  AIC=36.56
y ~ x1 + x4 + x5

       Df Deviance    AIC
- x5    1   29.073 35.073
<none>      28.564 36.564
- x4    1   32.892 38.892
- x1    1   38.478 44.478

Step:  AIC=35.07
y ~ x1 + x4

       Df Deviance    AIC
<none>      29.073 35.073
- x4    1   33.535 37.535
- x1    1   39.131 43.131
复制代码
> summary(log.step)

Call:
glm(formula = y ~ x1 + x4, family = binomial, data = df)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) -6.13755    2.73844  -2.241   0.0250 *
x1           0.09759    0.04079   2.393   0.0167 *
x4          -1.12524    0.60239  -1.868   0.0618 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 44.987  on 39  degrees of freedom
Residual deviance: 29.073  on 37  degrees of freedom
AIC: 35.073

Number of Fisher Scoring iterations: 6

使用逐步回归法得到了最终的回归方程,此时已经剔除了变量X2,X3,X5,只保留变量X1,X4,从回归方程的检验结果来看,系数是显著性得到了提高。

最终的回归方程为:

p=exp(-6.13755+0.09759x1-1.12524x4)/(1+exp(-6.13755+0.09759x1-1.12524x4))

使用该回归方程对,对40位病人生存时间较长的概率(Y=1)进行拟合和预测。

复制代码
> log.pre<-predict(log.step)
> p<-exp(log.pre)/(1+exp(log.pre))
> p
运行得到各病人的生存时间较长的概率p(Y=1):
  

从而得到最终的生存时间较长的概率的拟合值。

相关推荐
OpenMiniServer1 分钟前
电气化能源革命下的社会
java·人工智能·能源
猿小羽6 分钟前
探索 Codex:AI 编程助手的未来潜力
人工智能·openai·代码生成·codex·ai编程助手
菜青虫嘟嘟11 分钟前
Expert Iteration:一种无需人工标注即可显著提升大语言模型推理能力的简单方法核心
人工智能·语言模型·自然语言处理
玄同76516 分钟前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
deepdata_cn23 分钟前
为什么AI需要因果?
人工智能·因果学习
说私域34 分钟前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究
人工智能·小程序·私域运营
LaughingZhu35 分钟前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营
下午写HelloWorld37 分钟前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn
Sagittarius_A*38 分钟前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
小润nature1 小时前
Moltbot/OpenClaw Gateway 命令和交互
人工智能