leetcode 198.打家劫舍

首先说知识点,就是动态规划问题。

思路:既然是对于最优方案的考虑,我们就需要有一个思想,就是用动态规划的思想进行思考,动态规划解决的便是这种最优化问题,我们首先想一下,既然说是偷盗最多的金额,那么也就是说,从0-n这些范围中,我们需要逐一判断情况。

当没有房子的时候,自然就是0;当只有一个房子的时候,就只有这一个,也就是nums[0];当我们有两个房子的时候,这个时候就是max(nums[0],nums[1])了;当我们的房子数大于2的时候,我们需要思考:怎样才能不在临近的房子里偷取最多的金额呢?暴力首先是不行的,因为我们如果进行暴力的话还需要回溯,这样写起来会非常麻烦;动态规划首先的一个问题就是在分析当前问题的时候能否选这个房子。OK,我们下面做个假设:

如果说我们现在正准备偷第k间房子,这个时候我们有两个选择:第一个是偷,第二个是不偷。当然,这两种可能我们都需要考虑。有人可能会问了,这第k间房子旁边的房子是否已经偷过了呢?还需要考虑吗?答案是不需要。因为我们从0开始一直在做最优解的结构化,也就是说,我们遍历到k的时候其实前面的k-1间我们已经把该考虑的考虑过了,所以我们只需要考虑当前的选择就行了。

于是,我们分析这两个可能性:第一个,如果我们选择偷的话,那么,旁边的房子我们不能偷,也就是说,我们的第k-1个房子是不能偷的,但是我们可以偷第k-2个房子,也就是说在前k-2间房子的偷取金额加上当前的偷取房子,就是这种可能性的金额;第二个,如果我们选择不偷的话,那么,旁边的房子我们就可以考虑了,也就是前k-1个房子偷取的金额数。

这样,我们的转移方程其实就分析出来了:

dp[i]=max(dp[i-2]+nums[i],dp[i-1])

注意,我们需要从i=2开始遍历,因为0,1我们在前面已经考虑过了,所以只需要从第3个开始考虑即可。

上代码:

复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
        int sum=0;
        vector<int>dp(n,0);
        if(n==0)
        return 0;
        else if(n==1)
        return nums[0];
        dp[0]=nums[0];
        dp[1]=max(nums[0],nums[1]);
        for(int i=2;i<n;i++){
            dp[i]=max(dp[i-2]+nums[i],dp[i-1]);
        }
        return dp[n-1];
    }
};
相关推荐
地平线开发者28 分钟前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者41 分钟前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9362 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑3 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟4 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀4 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散1124 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧5 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb5 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
旺小仔.6 小时前
双指针和codetop复习
数据结构·c++·算法