A Brief Introduction of the Violin Plot and Box Plot

Date Author Version Note
2024.03.03 Dog Tao V1.0 Release the note.

文章目录

  • [A Brief Introduction of the Violin Plot and Box Plot](#A Brief Introduction of the Violin Plot and Box Plot)
    • [Box Plot](#Box Plot)
    • [Violin Plot](#Violin Plot)
    • [Histogram with Error Bar](#Histogram with Error Bar)
    • Comparison
    • [Example 1](#Example 1)
    • [Example 2](#Example 2)

A Brief Introduction of the Violin Plot and Box Plot

Box Plot

A Box Plot, also known as a Box-and-Whisker Plot, provides a visual summary of a data set's central tendency, variability, and skewness. The "box" represents the interquartile range (IQR) where the middle 50% of data points lie, with a line inside the box indicating the median value. The "whiskers" extend from the box to show the range of the data, typically to 1.5 * IQR beyond the quartiles, though this can vary. Data points outside of the whiskers are often considered outliers.

Violin Plot

A Violin Plot combines features of the Box Plot with a kernel density plot, which shows the distribution shape of the data. The width of the violin at different values indicates the kernel density estimation of the data at that value, providing a deeper insight into the distribution of the data, including multimodality (multiple peaks). It includes a marker for the median of the data and often includes a box plot inside the violin.

Histogram with Error Bar

A Histogram is a graphical representation of the distribution of numerical data, where the data is divided into bins, and the frequency of data points within each bin is depicted. An Error Bar can be added to a histogram to represent the variability of the data. The error bars typically represent the standard deviation, standard error, or confidence interval for the data.

Comparison

  • Violin Plot: This plot provides a visual summary of the data distribution along with its probability density. The width of the plot at different values indicates the density of the data at that point, showing where the data is more concentrated.

  • Box Plot: This plot shows the median (central line), interquartile range (edges of the box), and potential outliers (dots outside the 'whiskers'). It's useful for identifying the central tendency and spread of the data, as well as outliers.

  • Histogram with Error Bar: The histogram shows the frequency distribution of the data across different bins. The error bars on each bin represent the variability of the data within that bin, using the standard error of the mean to give an idea of the uncertainty around the count in each bin.

Example 1

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

# Generating a random dataset
np.random.seed(10)
data = np.random.normal(loc=0, scale=1, size=100)

# Setting up the matplotlib figure
plt.figure(figsize=(14, 6))

# Creating a subplot for the Violin Plot
plt.subplot(1, 3, 1)
sns.violinplot(data=data, inner="quartile", color="lightgray")
plt.title('Violin Plot')

# Creating a subplot for the Box Plot
plt.subplot(1, 3, 2)
sns.boxplot(data=data, width=0.3, color="skyblue")
plt.title('Box Plot')

# Creating a subplot for the Histogram with Error Bar
plt.subplot(1, 3, 3)
mean = np.mean(data)
std = np.std(data)
count, bins, ignored = plt.hist(data, bins=10, color="pink", edgecolor='black', alpha=0.7)
plt.errorbar((bins[:-1] + bins[1:]) / 2, count, yerr=std / np.sqrt(count), fmt='o', color='red', ecolor='lightgray', elinewidth=3, capsize=0)
plt.title('Histogram with Error Bar')

plt.tight_layout()
plt.show()

Example 2

python 复制代码
# Generating two random datasets for comparison
np.random.seed(10)
data1 = np.random.normal(loc=0, scale=1, size=100)  # Dataset 1
data2 = np.random.normal(loc=1, scale=1.5, size=100)  # Dataset 2

# Setting up the matplotlib figure
plt.figure(figsize=(14, 6))

### Creating a customized Violin Plot
plt.subplot(1, 3, 1)
sns.violinplot(data=[data1, data2], inner="quartile", split=True, palette=["lightblue", "lightgreen"], orient="h")
plt.title('Customized Violin Plot')

### Creating a customized Box Plot
plt.subplot(1, 3, 2)
sns.boxplot(data=[data1, data2], width=0.5, palette=["skyblue", "lightgreen"], orient="h", showmeans=True, notch=True, meanprops={"marker":"o", "markerfacecolor":"red", "markeredgecolor":"black"})
plt.title('Customized Box Plot')

### Creating a customized Histogram with Error Bars
plt.subplot(1, 3, 3)

# Histogram for Dataset 1
count1, bins1, ignored1 = plt.hist(data1, bins=10, color="skyblue", edgecolor='black', alpha=0.5, label='Dataset 1')

# Histogram for Dataset 2
count2, bins2, ignored2 = plt.hist(data2, bins=10, color="lightgreen", edgecolor='black', alpha=0.5, label='Dataset 2')

# Error Bars for Dataset 1
std1 = np.std(data1)
plt.errorbar((bins1[:-1] + bins1[1:]) / 2, count1, yerr=std1 / np.sqrt(count1), fmt='o', color='blue', ecolor='lightgray', elinewidth=3, capsize=0)

# Error Bars for Dataset 2
std2 = np.std(data2)
plt.errorbar((bins2[:-1] + bins2[1:]) / 2, count2, yerr=std2 / np.sqrt(count2), fmt='o', color='green', ecolor='lightgray', elinewidth=3, capsize=0)

# Mean Lines and Legend
plt.axvline(np.mean(data1), color='blue', linestyle='dashed', linewidth=1)
plt.axvline(np.mean(data2), color='green', linestyle='dashed', linewidth=1)
plt.legend()

plt.title('Customized Histogram with Error Bars')

plt.tight_layout()
plt.show()
相关推荐
这里有鱼汤7 分钟前
Python 图像处理必备的 15 个基本技能 🎨
前端·后端·python
这里有鱼汤7 分钟前
想学会Python自动化办公?这20个Excel表格操作脚本一定要掌握!
前端·后端·python
ALe要立志成为web糕手11 分钟前
用Python实现TCP代理
网络·python·网络协议·tcp/ip·安全·web安全
程序员三藏12 分钟前
Python+Jenkins+Allure Report接口自动化测试持续集成
自动化测试·软件测试·python·测试工具·ci/cd·jenkins·测试用例
爱摄影的程序猿20 分钟前
Python Web 框架 django-vue3-admin快速入门 django后台管理
前端·python·django
萧鼎22 分钟前
Python WebSockets 库详解:从基础到实战
开发语言·python
Code_流苏28 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W31 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang31 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习