Learning and Leveraging World Models in Visual Representation Learning

Learning and Leveraging World Models in Visual Representation Learning

相关链接:arxiv

关键字:学习世界模型视觉表示学习自监督学习JEPAImage World Models

摘要

本文探索了在自监督视觉表示学习中学习和利用世界模型的方法。作者引入了图像世界模型(Image World Models, IWM),一种学习预测全局光度变换效果的新方法。作者发现有效的IWM模型取决于多种因素,包括条件设置、预测难度和容量。此外,通过微调,IWM可以适应不同的任务,甚至在图像分类和语义分割等任务上与或超越了先前的自监督方法。实验证明,通过IWM学习,可以控制所学表示的抽象级别,能够学习到如对比学习方法中的不变表示,或如遮蔽图像建模的等变表示。

核心方法

IWM建模框架JEPA(Joint-Embedding Predictive Architecture)的核心在于学习一个通过预测来利用世界模型的能力,包括以下方面:

  • 条件设置:通过为预测器提供关于目标的几何信息(例如屏蔽tokens)和变换参数ax→y进行调整。
  • 预测难度:通过使用数据增强来创建目标和源视图,增加了预测的复杂性。
  • 容量:确定了深度的预测器模型以学习适当的变换,以此学习强大的世界模型。

作者通过多种实验测量了这些构建一个强大IWM的关键要素,从而在表示学习中实现良好的性能。

实验说明

以下是对该文中所提方法的实验性能比较的一个展示:

方法 Epochs 无预测器 固定编码器微调预测器 端到端
MAE 300 82.7 82.4 83.3
I-JEPA 300 83.0 82.0 82.0(预训练)
IWMInv (12,384) 300 83.3 82.7 83.3(预训练)
IWMEqui (18,384) 300 82.9 84.4 84.4(预训练)

实验中使用ImageNet进行评估,对比拉动MAE、I-JEPA等方法,以及对IWM的不变和等变世界模型的表现。从表中可以看出,良好的IWM在固定编码器的情况下微调预测器可以达到相当甚至超过单纯微调编码器的性能。

此外,作者还探索了多任务预测器微调,即预测器可以被微调应用于多个任务上,而且综合性能没有明显下降。这展示了世界模型的通用性和适用性。

结论

本文提出了图像世界模型IWM作为学习自监督视觉表示的新框架。考虑到世界模型条件设置、预测任务的复杂性和预测器的容量都对学习性能有显著影响,作者提出不抛弃在表示学习中学到的世界模型,而是在下游任务中进一步利用微调。实验证明该方法在多项视觉任务中表现良好,为自监督视觉表示学习提供了新的方向。

相关推荐
高洁011 分钟前
数字孪生与数字样机的技术基础:建模与仿真
python·算法·机器学习·transformer·知识图谱
AC赳赳老秦6 分钟前
Dify工作流+DeepSeek:运维自动化闭环(数据采集→报告生成)
android·大数据·运维·数据库·人工智能·golang·deepseek
Deepoch8 分钟前
Deepoc具身模型:清洁机器人的智能决策引擎
人工智能·机器人·生活·开发板·清洁机器人·具身模型·deepoc
莫非王土也非王臣24 分钟前
迁移学习详情介绍
人工智能·机器学习·迁移学习
AI即插即用24 分钟前
即插即用系列 | CVPR 2025 MK-UNet: 多核深度可分离卷积,重新定义轻量级医学图像分割
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
汽车仪器仪表相关领域24 分钟前
全程高温伴热,NOx瞬态精准捕捉:MEXA-1170HCLD加热型NOx测定装置项目实战全解
大数据·服务器·网络·人工智能·功能测试·单元测试·可用性测试
发光的叮当猫26 分钟前
什么是梯度
人工智能·深度学习
淡忘旧梦27 分钟前
词错误率/WER算法讲解
人工智能·笔记·python·深度学习·算法
2501_9361460431 分钟前
柿子目标检测实战:YOLO11-HSFPN网络优化与性能分析
人工智能·目标检测·计算机视觉
程途拾光15832 分钟前
AI从工具向自主决策者的身份
人工智能