【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】

Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令

1、名词解释

1.1 CUDA

CUDA(Compute Unified Device Architecture)是由NVIDIA开发的用于并行计算的平台和编程模型。CUDA旨在利用NVIDIA GPU(图形处理单元)的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。

  • GPU并行计算
    • CUDA使GPU能够执行并行计算任务,从而大幅提高了计算性能。GPU由许多小型处理单元组成,每个处理单元都能够执行多个线程,这意味着GPU可以同时处理大量的计算任务。
  • NVIDIA GPU支持
    • CUDA仅适用于NVIDIA GPU
    • 不同版本的CUDA通常与特定型号的NVIDIA GPU兼容,因此需要确保你的GPU支持所选版本的CUDA。
  • CUDA工具和库
    • NVIDIA提供了一套用于CUDA开发的工具和库,包括CUDA Toolkit、cuDNN(CUDA深度神经网络库)、cuBLAS(CUDA基础线性代数库)等。这些工具和库简化了CUDA应用程序的开发和优化过程。

1.2 Cudnn

  • cuDNN(CUDA Deep Neural Network Library)
    • 由NVIDIA开发的用于深度学习的加速库。
    • cuDNN旨在优化神经网络的前向传播和反向传播过程,以利用NVIDIA GPU的并行计算能力,从而加速深度学习模型的训练和推理。
  • 深度学习加速
    • cuDNN是专门为深度学习任务而设计的,旨在加速神经网络的训练和推理。它提供了一系列高度优化的算法和函数,用于执行神经网络层的前向传播、反向传播和权重更新。
  • GPU加速
    • cuDNN充分利用NVIDIA GPU的并行计算能力,以高效地执行深度学习操作。这使得训练深度神经网络更快速,尤其是对于大型模型和大规模数据集。
  • 版本兼容性
    • cuDNN的不同版本与NVIDIA GPU架构和深度学习框架的版本兼容。因此,为了获得最佳性能,你需要选择适用于你的GPU型号和深度学习框架版本的cuDNN版本。cuDNN是免费的,可以在NVIDIA的官方网站上下载和使用。

1.3 PyTorch

  • PyTorch 是一个开源的深度学习框架,由Facebook的人工智能研究团队开发和维护。它是一个非常流行的深度学习框架,用于构建和训练神经网络模型。
  • 动态计算图
    • PyTorch 采用动态计算图(Dynamic Computational Graph)的方式来定义和执行神经网络。这意味着你可以像编写常规Python代码一样编写神经网络,同时保留了计算图的优势,使模型的构建和调试更加直观和灵活。
    • PyTorch 提供了丰富的张量操作,以及各种优化工具和模块,可以轻松构建各种类型的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。它还支持自定义神经网络层和损失函数,允许你创建高度定制的模型。
  • GPU加速
    • PyTorch天然支持GPU加速,你可以在GPU上训练和执行神经网络,大幅提高了计算性能。PyTorch的GPU张量操作与CPU张量操作非常相似,使得将计算从CPU迁移到GPU变得相对容易。

2、三者关系

  • CUDA、cuDNN 和 PyTorch 是三个不同但相关的组件,它们之间存在一些依赖关系,特别是在使用 PyTorch 进行深度学习开发时。
  • CUDA(Compute Unified Device Architecture)
    • 「CUDA是GPU并行计算平台」:CUDA 是由 NVIDIA 开发的用于并行计算的平台和编程模型。它允许开发人员利用 NVIDIA GPU 的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。
    • 「PyTorch依赖CUDA」:PyTorch 使用 CUDA 来加速神经网络的训练和推理。在 PyTorch 中,张量(Tensor)可以在 CPU 或 GPU 上进行计算。如果你想在 GPU 上训练神经网络,你需要确保 CUDA 已经正确安装并配置。
    • 「版本兼容性」:不同版本的 PyTorch 可能需要特定版本的 CUDA。你需要根据所使用的 PyTorch 版本来选择合适的 CUDA 版本,以确保兼容性。
  • cuDNN(CUDA Deep Neural Network Library)
    • 「cuDNN用于深度学习加速」:cuDNN 是 NVIDIA 开发的专门用于深度学习的加速库。它提供了高度优化的卷积和其他深度神经网络层的操作,以提高深度学习模型的性能。
    • 「PyTorch依赖cuDNN」:PyTorch 使用 cuDNN 来执行深度学习操作,尤其是在卷积神经网络(CNN)中。cuDNN 提供了高性能的卷积操作,使 PyTorch 能够在 GPU 上高效地进行前向传播和反向传播。
    • 「版本兼容性」:不同版本的 PyTorch 需要特定版本的 cuDNN。你需要确保所使用的 cuDNN 版本与 PyTorch 版本兼容。
  • 「PyTorch」
    • 「PyTorch是深度学习框架」:PyTorch 是一个开源的深度学习框架,用于构建、训练和部署神经网络模型。它提供了张量操作、自动求导、优化器、损失函数等工具,使深度学习任务更加便捷。
    • 「PyTorch依赖CUDA和cuDNN」:PyTorch 可以在 CPU 或 GPU 上运行,但为了获得最佳性能,特别是在大规模深度学习任务中,你通常会将 PyTorch 配置为在 GPU 上运行。这就需要确保 CUDA 和 cuDNN 已正确安装和配置。

3、Pytorch 、torchvision、python版本对应图

4、CUDA与Driver Version对应关系表

5、如何查询服务器CUDA版本、Pytorch版本

5.1 查询服务器CUDA版本

  • 在terminal中输入:nvidia-smi 即可,如下图👇所示

5.2 查询Pytorch版本

  • 在terminal中输入以下指令即可,如下图👇所示
  • print(torch.__version__)

6、安装Pytorch、torchvision的指令

bash 复制代码
pip install torch==1.13.0 torchvision==1.4.0 -i https://pypi.douban.com/simple
相关推荐
聪明的墨菲特i3 分钟前
Django前后端分离基本流程
后端·python·django·web3
悟兰因w6 分钟前
论文阅读(三十五):Boundary-guided network for camouflaged object detection
论文阅读·人工智能·目标检测
大山同学8 分钟前
多机器人图优化:2024ICARA开源
人工智能·语言模型·机器人·去中心化·slam·感知定位
工业3D_大熊9 分钟前
【虚拟仿真】CEETRON SDK在船舶流体与结构仿真中的应用解读
java·python·科技·信息可视化·c#·制造·虚拟现实
Topstip15 分钟前
Gemini 对话机器人加入开源盲水印技术来检测 AI 生成的内容
人工智能·ai·机器人
SEEONTIME18 分钟前
python-24-一篇文章彻底掌握Python HTTP库Requests
开发语言·python·http·http库requests
Bearnaise18 分钟前
PointMamba: A Simple State Space Model for Point Cloud Analysis——点云论文阅读(10)
论文阅读·笔记·python·深度学习·机器学习·计算机视觉·3d
Zfox_19 分钟前
【Linux】进程信号全攻略(二)
linux·运维·c语言·c++
速盾cdn19 分钟前
速盾:vue的cdn是干嘛的?
服务器·前端·网络
安於宿命24 分钟前
【Linux】简易版shell
linux·运维·服务器