基于R语言的分位数回归技术应用

回归是科研中最常见的统计学研究方法之一,在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;(3)只能估计因变量的条件均值,不能估计自变量对因变量分位点的不同影响。分位数回归的出现较好的解决了第(1)和第(3)个问题,对不同分布数据也表现非常好的稳定性。分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。

专题一:线性回归假设与分位数函数

1.线性回归的本质

2.线性回归的基本假设

3.最小二乘法与极大似然法

4.线性回归的推广与分位数函数

专题二:线性分位数回归 代码实践】

1.最小一乘法及其推广

2.分位数回归结果的解释

3.显著性检验

4.分位数回归的拟合优度检验

专题三:贝叶斯分位数回归 【代码实践】

1.贝叶斯统计学的基本概念

2.非对称拉普拉斯先验

3.贝叶斯分位数回归

专题四:超越线性分位数回归(一) 【代码实践】

1.非线性分位数回归

2.非参数分位数回归

3.广义分位数回归及其贝叶斯版本

专题五:超越线性分位数回归(二) 【代码实践】

1.线性分位数混合效应模型

2.CDF-分位数回归

3.分位数随机森林

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247618536&idx=8&sn=84ca3cf54ca5d3133a0aa7317e5a98a3&chksm=fa7850d5cd0fd9c32d569cd017965b4459ceff2d10937673ccf22c0bb175ec3d345082d1163d&token=1356914685&lang=zh_CN&scene=21#wechat_redirect

相关推荐
hacker70715 小时前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
大云计算机毕设17 小时前
【2026计算机毕设选题】计算机毕设全新推荐项目选题指南(70+精选热门方向)
spring·数据分析·毕业设计·课程设计·毕设
图灵信徒20 小时前
R语言第七章线性回归模型
数据挖掘·数据分析·r语言·线性回归
Lwcah21 小时前
Python | LGBM+SHAP可解释性分析回归预测及可视化算法
python·算法·回归
rgb2gray1 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
大数据魔法师2 天前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
大数据魔法师2 天前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
学术小白人2 天前
会议第一轮投稿!2026年物联网、数据科学与先进计算国际学术会议(IDSAC2026)
人工智能·物联网·数据分析·能源·制造·教育·rdlink研发家
happy egg2 天前
随机森林分类VS回归
随机森林·分类·回归
7***37452 天前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘