基于R语言的分位数回归技术应用

回归是科研中最常见的统计学研究方法之一,在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;(3)只能估计因变量的条件均值,不能估计自变量对因变量分位点的不同影响。分位数回归的出现较好的解决了第(1)和第(3)个问题,对不同分布数据也表现非常好的稳定性。分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。

专题一:线性回归假设与分位数函数

1.线性回归的本质

2.线性回归的基本假设

3.最小二乘法与极大似然法

4.线性回归的推广与分位数函数

专题二:线性分位数回归 代码实践】

1.最小一乘法及其推广

2.分位数回归结果的解释

3.显著性检验

4.分位数回归的拟合优度检验

专题三:贝叶斯分位数回归 【代码实践】

1.贝叶斯统计学的基本概念

2.非对称拉普拉斯先验

3.贝叶斯分位数回归

专题四:超越线性分位数回归(一) 【代码实践】

1.非线性分位数回归

2.非参数分位数回归

3.广义分位数回归及其贝叶斯版本

专题五:超越线性分位数回归(二) 【代码实践】

1.线性分位数混合效应模型

2.CDF-分位数回归

3.分位数随机森林

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247618536&idx=8&sn=84ca3cf54ca5d3133a0aa7317e5a98a3&chksm=fa7850d5cd0fd9c32d569cd017965b4459ceff2d10937673ccf22c0bb175ec3d345082d1163d&token=1356914685&lang=zh_CN&scene=21#wechat_redirect

相关推荐
大数据魔法师5 小时前
豆瓣图书数据采集与可视化分析(四)- 豆瓣图书数据可视化(Pyecharts)
python·数据分析·数据可视化
Python当打之年6 小时前
【61 Pandas+Pyecharts | 基于Apriori算法及帕累托算法的超市销售数据分析可视化】
python·信息可视化·数据分析·pandas·数据可视化
lilye666 小时前
精益数据分析(102/126):SaaS用户流失率优化与OfficeDrop的转型启示
数据挖掘·数据分析
Morpheon8 小时前
R语言非结构化文本挖掘入门指南
开发语言·r语言
lilye668 小时前
精益数据分析(103/126):免费移动应用的下载量、成本优化与案例解析
数据挖掘·数据分析
XiaoQiong.Zhang8 小时前
简历模板3——数据挖掘工程师5年经验
大数据·人工智能·机器学习·数据挖掘
Python当打之年11 小时前
【59 Pandas+Pyecharts | 淘宝华为手机商品数据分析可视化】
华为·智能手机·数据分析·pandas·数据可视化
数量技术宅12 小时前
数字合约价格发现功能
python·数据分析·量化策略·数字货币·量化投资
XiaoQiong.Zhang13 小时前
简历模板2——数据挖掘工程师5年经验
人工智能·数据挖掘
美林数据Tempodata1 天前
大模型驱动数据分析革新:美林数据智能问数解决方案破局传统 BI 痛点
数据库·人工智能·数据分析·大模型·智能问数