数据分析-Pandas数据画箱线图

数据分析-Pandas数据画箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测NO_2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测NO_2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
​
plt.close("all")

画箱线图

有时候为了在一幅画表达出最大值,最小值,中位数等信息,箱线图最适合不过了。其实很简单,以下是调用的样例:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
​
df.plot.box();

设置箱线图的样式

如果还想设置各个线段的颜色,可以一组数据设置,例如:

python 复制代码
color = {
    "boxes": "DarkGreen",
    "whiskers": "DarkOrange",
    "medians": "DarkBlue",
    "caps": "Gray",
}
​
df.plot.box(color=color, sym="r+");

此外,还可以指定站着,还是躺着,还有位置。如下:

python 复制代码
df.plot.box(vert=False, positions=[1, 4, 5, 6, 8]);

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
云天徽上9 小时前
【机器学习】Kaggle案例之Rossmann连锁药店销售额预测:时间序列与机器学习完美融合的实战指南
机器学习·数据挖掘·kaggle
Brduino脑机接口技术答疑11 小时前
TDCA 算法在 SSVEP 场景中的 Padding 技术:原理、应用与工程实现
人工智能·算法·机器学习·数据分析·脑机接口
A3608_(韦煜粮)13 小时前
从数据沼泽到智慧引擎:现代大数据分析与应用架构全景解密
大数据·数据分析·数据治理·实时计算·数据架构·数据网格·数据湖仓
Ethan Hunt丶14 小时前
运动想象脑电的基本原理与分类方法
人工智能·分类·数据挖掘·脑机接口
Yuer202516 小时前
为什么要用rust做算子执行引擎
人工智能·算法·数据挖掘·rust
山海青风18 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 8 基础模型之分类模型
人工智能·分类·数据挖掘
心无旁骛~19 小时前
华为 ModelEngine Nexent低代码平台单智能体评测:数据分析智能体 —— 零代码实现数据洞察与可视化闭环
低代码·数据挖掘·数据分析
yousuotu19 小时前
基于Python的亚马逊销售数据集探索性数据分析
开发语言·python·数据分析
算法与编程之美19 小时前
探索不同的损失函数对分类精度的影响
人工智能·算法·机器学习·分类·数据挖掘
AI浩19 小时前
RDD4D:基于4D注意力引导的道路损伤检测与分类
人工智能·分类·数据挖掘