算法沉淀——贪心算法一(leetcode真题剖析)

算法沉淀------贪心算法一

贪心算法(Greedy Algorithm)是一种基于贪心策略的优化算法,它通常用于求解最优化问题,每一步都选择当前状态下的最优解,以期望通过局部最优的选择最终达到全局最优。贪心算法的思想是在每一步都做出在当前状态下局部最优的选择,而不考虑未来可能造成的影响。

在应用贪心算法时,通常需要满足两个基本要素:

  1. 最优子结构性质(Optimal Substructure): 问题的最优解包含了其子问题的最优解。这意味着通过解决子问题可以得到原问题的最优解。
  2. 贪心选择性质(Greedy-Choice Property): 在做每一步的选择时,选择当前状态下的最优解,即局部最优解。这样希望通过局部最优选择达到全局最优。

贪心算法适用于一些特定类型的问题,但并不适用于所有问题。它通常比动态规划算法更加高效,因为它不需要考虑所有可能的解,只需选择当前状态下的最优解。然而,贪心算法的局限性在于可能会错过全局最优解,因为它没有考虑未来的影响。

经典应用贪心算法的问题包括:

  • 活动选择问题(Activity Selection Problem): 选择一组互不相交的活动,使得参与的活动数最大。
  • 霍夫曼编码(Huffman Coding): 用变长编码表示不同字符,使得编码长度的加权和最小。
  • 最小生成树问题(Minimum Spanning Tree Problem): 在一个连通图中找到一棵包含所有顶点的树,使得树上边的权值之和最小。
  • 单源最短路径问题的Dijkstra算法: 在一个带权图中,从一个顶点出发,找到到达其他顶点的最短路径。

需要注意的是,贪心算法并不总是能够找到问题的最优解,因此在应用时需要仔细分析问题的性质,确定贪心选择是否能够保证得到全局最优解。

01.柠檬水找零

题目链接:https://leetcode.cn/problems/lemonade-change/

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。

注意,一开始你手头没有任何零钱。

给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false

示例 1:

输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。

示例 2:

输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。

提示:

  • 1 <= bills.length <= 105
  • bills[i] 不是 5 就是 10 或是 20

思路

  1. 当你收到 5 美元时,可以直接收下,不需要找零。
  2. 当你收到 10 美元时,你可以找零一个 5 美元,因为这样保留了足够的 5 美元找零。
  3. 当你收到 20 美元时,可以优先选择找零一个 10 美元和一个 5 美元的组合,因为这样可以保留更多的 5 美元找零。

代码

cpp 复制代码
class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
        int five = 0, ten = 0;
        for(int& x:bills){
            if(x==5) five++;
            else if(x==10){
                if(five==0) return false;
                five--;ten++;
            }
            else{
                if(ten&&five){
                    ten--;five--;
                }
                else if(five>=3) five-=3;
                else return false; 
            }
        }
        return true;
    }
};

02.将数组和减半的最少操作次数

题目链接:https://leetcode.cn/problems/minimum-operations-to-halve-array-sum/

给你一个正整数数组 nums 。每一次操作中,你可以从 nums 中选择 任意 一个数并将它减小到 恰好 一半。(注意,在后续操作中你可以对减半过的数继续执行操作)

请你返回将 nums 数组和 至少 减少一半的 最少 操作数。

示例 1:

输入:nums = [5,19,8,1]
输出:3
解释:初始 nums 的和为 5 + 19 + 8 + 1 = 33 。
以下是将数组和减少至少一半的一种方法:
选择数字 19 并减小为 9.5 。
选择数字 9.5 并减小为 4.75 。
选择数字 8 并减小为 4 。
最终数组为 [5, 4.75, 4, 1] ,和为 5 + 4.75 + 4 + 1 = 14.75 。
nums 的和减小了 33 - 14.75 = 18.25 ,减小的部分超过了初始数组和的一半,18.25 >= 33/2 = 16.5 。
我们需要 3 个操作实现题目要求,所以返回 3 。
可以证明,无法通过少于 3 个操作使数组和减少至少一半。

示例 2:

输入:nums = [3,8,20]
输出:3
解释:初始 nums 的和为 3 + 8 + 20 = 31 。
以下是将数组和减少至少一半的一种方法:
选择数字 20 并减小为 10 。
选择数字 10 并减小为 5 。
选择数字 3 并减小为 1.5 。
最终数组为 [1.5, 8, 5] ,和为 1.5 + 8 + 5 = 14.5 。
nums 的和减小了 31 - 14.5 = 16.5 ,减小的部分超过了初始数组和的一半, 16.5 >= 31/2 = 15.5 。
我们需要 3 个操作实现题目要求,所以返回 3 。
可以证明,无法通过少于 3 个操作使数组和减少至少一半。

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

思路

  1. 选择最大值: 每次从数组中选择当前最大的数。这可以通过使用堆来实现,具体来说是最大堆(Max Heap)。最大堆可以在O(1)时间内找到当前最大的元素。
  2. 减半: 将所选的最大值减半。这一步确保了每次选择都在尽量降低总和。
  3. 重复操作: 重复上述步骤直到数组和减少到至少一半。

代码

cpp 复制代码
class Solution {
public:
    int halveArray(vector<int>& nums) {
        priority_queue<double> heap;
        double sum=0.0;
        for(int x:nums){
            heap.push(x);
            sum+=x;
        }
        sum/=2.0;

        int count=0;
        while(sum>0){
            double tmp=heap.top()/2.0;
            heap.pop();
            sum-=tmp;
            count++;
            heap.push(tmp);
        }
        return count;
    }
};

03.最大数

题目链接:https://leetcode.cn/problems/largest-number/

给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数。

**注意:**输出结果可能非常大,所以你需要返回一个字符串而不是整数。

示例 1:

输入:nums = [10,2]
输出:"210"

示例 2:

输入:nums = [3,30,34,5,9]
输出:"9534330"

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 109

思路

  1. 将所有的数字转换为字符串,以便方便拼接和比较。
  2. 定义一个新的排序规则,按照以下原则排序:
    • 如果 A 拼接 B 大于 B 拼接 A,那么 A 在前,B 在后。
    • 如果 A 拼接 B 等于 B 拼接 A,则 AB 顺序无关。
    • 如果 A 拼接 B 小于 B 拼接 A,那么 B 在前,A 在后。
  3. 按照新的排序规则对所有数字进行排序。
  4. 将排序后的数字依次拼接,得到最大的数字。

代码

cpp 复制代码
class Solution {
public:
    string largestNumber(vector<int>& nums) {
        vector<string> strs;
        for(int x:nums) strs.push_back(to_string(x));
        sort(strs.begin(),strs.end(),[](const string& s1,const string& s2){return s1+s2>s2+s1;});

        string ret;
        for(string& s:strs) ret+=s;

        if(ret[0]=='0') return "0";
        return ret; 
    }
};

04.摆动序列

题目链接:https://leetcode.cn/problems/wiggle-subsequence/

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 **摆动序列 。**第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
  • 相反,[1, 4, 7, 2, 5][1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列最长子序列的长度

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

思路

  1. 从数组的第一个元素开始,逐个比较相邻的元素,找到第一个波峰(当前元素大于前一个元素且大于后一个元素)或波谷(当前元素小于前一个元素且小于后一个元素)。
  2. 一旦找到波峰或波谷,将其计数,并开始寻找下一个波峰或波谷。在此过程中,确保不重复计数已经找到的波峰或波谷。
  3. 重复以上步骤,直到遍历整个数组。

代码

cpp 复制代码
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n=nums.size();
        if(n<2) return n;

        int ret=0,left=0;
        for(int i=0;i<n-1;i++){
            int right = nums[i+1]-nums[i];
            if(right==0) continue;
            if(right*left<=0) ret++;
            left=right;
        }
        return ret+1;
    }
};
相关推荐
小码农<^_^>7 分钟前
优选算法精品课--滑动窗口算法(一)
算法
羊小猪~~9 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡35 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
南宫生37 分钟前
贪心算法习题其三【力扣】【算法学习day.20】
java·数据结构·学习·算法·leetcode·贪心算法
AI视觉网奇1 小时前
sklearn 安装使用笔记
人工智能·算法·sklearn
JingHongB1 小时前
代码随想录算法训练营Day55 | 图论理论基础、深度优先搜索理论基础、卡玛网 98.所有可达路径、797. 所有可能的路径、广度优先搜索理论基础
算法·深度优先·图论
weixin_432702261 小时前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
小冉在学习1 小时前
day52 图论章节刷题Part04(110.字符串接龙、105.有向图的完全可达性、106.岛屿的周长 )
算法·深度优先·图论
Repeat7151 小时前
图论基础--孤岛系列
算法·深度优先·广度优先·图论基础
小冉在学习2 小时前
day53 图论章节刷题Part05(并查集理论基础、寻找存在的路径)
java·算法·图论