数据可视化基础篇-图形语法

当我们在制作仪表盘或其他数据可视化时离不开对图表的选择,不同的数据信息该怎么选择图表可能是不少人会遇到的问题。

要解决这个问题我们首先需要理解数据可视化的生成规律或者说是"语法",目前主流的数据可视化理论认为,可视化是由基础标记(Mark)沿着某个或是某些视觉通道(Visual channel)进行映射的结果。

  • 标记我们也可以理解为图形元素,包括点、线、面等
  • 视觉通道通常包括位置、形状、面积、斜度、颜色等

以下面图为例,图1柱状图其表现数据的标记为"线",柱的纵向长度是视觉通道。图2散点图多了一个横向视觉通道且以"点"为标记。图3多了一个颜色视觉通道。图4多了一个尺寸的视觉通道。

标记与数据关系

  • 点:每个点表示一个数据,点可以是各种图形(圆、矩形或是其他自定义图形等)
  • 线:通常情况表示一组数据,比如折线图的曲线。也可以表示一个数据,比如柱状图的柱(interval)数据对应就是柱的长度
  • 面:2D场景通常是线的延伸跟颜色组合用来突出数据,比如折线图和面积图

视觉通道与数据映射

数据通常为有序和分类两种形式,视觉通道也可以分为两种性质。

  • 分类性质:颜色的不同色调通常用于表现分类数据,比如服务状态,绿色代表健康,红色代表异常
  • 定量或定序性质:同一个色调的颜色不同亮度或是饱和度时可以用于表现有序的数据,常见的就是热力图比如 Github 的 contributions 图,contributions 数量越大当天的色块颜色就越深

通常情况会把形状、颜色的色调、空间位置认定为分类性质的视觉通道,其他的比如直线长度、区域面积、角度、颜色饱和度亮度等大部分认定为定量性质的视觉通道

以下整理了一些常见视觉通道和数据类型之间的映射关系

视觉通道 数据类型
位置 分类、有序
颜色(饱和度) 分类
形状 分类
长度 有序
面积、大小 有序
颜色(亮度/饱和度) 有序

按用途归类

  • 比较类帮忙我们对比两个或两个以上类别的值,常见的图表有:柱状图、热力图、饼图等
  • 趋势类展示数据随着时间的变化情况。常见的图表有:折线图、时序轴的柱状图等
  • 占比类指的是某一项或某几项数据在总体中的比重。常见的图表有:饼图、环图、仪表盘图、水位图等
  • 分布类展示数据分布的图表。常见的图表有:直方图(直方图和柱状图不是一类图表)、密度图等
  • 还有一些其他的类型 层级类、关系类、地图类等
相关推荐
Zoey的笔记本8 小时前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
前端开发与ui设计的老司机10 小时前
可视化低代码平台与定制化的区分,各自的使用场景。
低代码·数据可视化·可视化大屏
佛祖让我来巡山15 小时前
Numpy
机器学习·数据分析·numpy·矢量运算
CS创新实验室16 小时前
正态分布的深入学习:从数学发现到自然法则的演变
学习·数据挖掘·数据分析·统计学·正态分布
叫我:松哥17 小时前
基于Flask框架开发的智能旅游推荐平台,采用复合推荐算法,支持管理员、导游、普通用户三种角色
python·自然语言处理·flask·旅游·数据可视化·推荐算法·关联规则
dear_bi_MyOnly18 小时前
数据分析常用操作汇总
大数据·python·数据挖掘·数据分析·学习方法
YangYang9YangYan18 小时前
2026高职大数据专业:数据分析学习的价值与前景
大数据·学习·数据分析
csdn_aspnet18 小时前
MATLAB 高效算法实战:数据分析与算法优化的效率秘诀
算法·matlab·数据分析
jiaozi_zzq18 小时前
2026高职大数据与会计专业就业方向与能力发展指南
大数据·职场和发展·数据分析·证书