Hive表使用ORC格式和SNAPPY压缩建表语句示例

Hive表使用ORC格式和SNAPPY压缩建表语句示例

下面是一个sql示例:

c 复制代码
-- 创建数据库
CREATE DATABASE IF NOT EXISTS mydatabase;

-- 使用数据库
USE mydatabase;

-- 创建分区表,使用ORC文件格式,采用Snappy压缩算法
CREATE TABLE IF NOT EXISTS my_table (
id INT,
name STRING
)
PARTITIONED BY (dt STRING)
STORED AS ORC
LOCATION '/user/hive/warehouse/my_table'
TBLPROPERTIES ("orc.compress"="snappy");

-- 加载数据到分区表
INSERT INTO my_table PARTITION (dt=20240101) VALUES
(101, 'Alice'),
(102, 'Bob');

-- 查询分区表数据
SELECT * FROM my_table;

在这个示例中:

  • 首先创建了一个名为 mydatabase 的数据库并切换到该数据库。
  • 创建了一个名为 my_table 的分区表 ,包含了 id 和 name 两列。
  • 使用 PARTITIONED BY (dt STRING) 对表进行了日期分区,将数据按照日期进行分区存储。
  • 使用 STORED AS ORC 指定了使用ORC文件格式存储数据,ORC是Hive中常用的列式存储格式。
  • 使用 LOCATION 指定了表的存储路径。
  • 使用 TBLPROPERTIES ("orc.compress"="snappy") 设置了压缩算法为SNAPPY,对数据进行压缩存储。

Hive支持的常用文件格式

  • ORC(Optimized Row Columnar):列式存储格式,提供高压缩比和高性能的查询。

  • Parquet:另一种列式存储格式,支持高效的压缩和查询。

  • Text:文本文件格式,易于阅读和处理。

  • SequenceFile:Hadoop中的二进制文件格式,适合大数据存储和处理。
    Hive支持的常用压缩算法

  • SNAPPY:快速压缩算法,提供较高的压缩比和速度。

  • GZIP:通用的压缩算法,提供较高的压缩比,但速度相对较慢。

  • LZO:高效的压缩算法,支持快速压缩和解压缩,适合大数据处理。

  • BZIP2:提供更高的压缩比,但速度较慢,适合对存储空间要求较高的场景。


在选择压缩算法时,一般可以考虑以下几个因素

  1. 压缩比:不同的压缩算法具有不同的压缩比,一般来说,压缩比越高,存储空间占用越小,但可能会影响查询性能。
  2. 压缩速度:有些压缩算法压缩速度较快,适合对数据进行频繁压缩,而有些压缩算法压缩速度较慢,但压缩比较高。
  3. 解压速度:压缩算法解压速度也是一个重要考虑因素,因为查询时需要解压数据。
相关推荐
武子康15 分钟前
大数据-210 如何在Scikit-Learn中实现逻辑回归及正则化详解(L1与L2)
大数据·后端·机器学习
xiaobaishuoAI19 分钟前
全链路性能优化实战指南:从瓶颈定位到极致优化
大数据·人工智能·科技·百度·geo
乾元22 分钟前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
xiaobaishuoAI30 分钟前
后端工程化实战指南:从规范到自动化,打造高效协作体系
java·大数据·运维·人工智能·maven·devops·geo
Hello.Reader38 分钟前
PyFlink DataStream 程序骨架、常用 Source/Sink、状态(State)、与 Table/SQL 互转一篇搞定
数据库·sql·linq
俊哥大数据38 分钟前
【实战项目5】基于Flink新闻热搜大数据实时分析项目
大数据·flink
俊哥大数据43 分钟前
【实战项目3】基于Flink广告投放业务领域大数据实时分析项目
大数据·flink
学好statistics和DS1 小时前
Git 同步冲突
大数据·git·elasticsearch
俊哥大数据1 小时前
【项目6】基于Hadoop+Hive+Springboot+vue新闻资讯大数据仓库项目
数据仓库·hive·hadoop
俊哥大数据1 小时前
【实战项目4】Hadoop金融信贷大数据离线分析项目
大数据·hadoop·金融