Hive表使用ORC格式和SNAPPY压缩建表语句示例

Hive表使用ORC格式和SNAPPY压缩建表语句示例

下面是一个sql示例:

c 复制代码
-- 创建数据库
CREATE DATABASE IF NOT EXISTS mydatabase;

-- 使用数据库
USE mydatabase;

-- 创建分区表,使用ORC文件格式,采用Snappy压缩算法
CREATE TABLE IF NOT EXISTS my_table (
id INT,
name STRING
)
PARTITIONED BY (dt STRING)
STORED AS ORC
LOCATION '/user/hive/warehouse/my_table'
TBLPROPERTIES ("orc.compress"="snappy");

-- 加载数据到分区表
INSERT INTO my_table PARTITION (dt=20240101) VALUES
(101, 'Alice'),
(102, 'Bob');

-- 查询分区表数据
SELECT * FROM my_table;

在这个示例中:

  • 首先创建了一个名为 mydatabase 的数据库并切换到该数据库。
  • 创建了一个名为 my_table 的分区表 ,包含了 id 和 name 两列。
  • 使用 PARTITIONED BY (dt STRING) 对表进行了日期分区,将数据按照日期进行分区存储。
  • 使用 STORED AS ORC 指定了使用ORC文件格式存储数据,ORC是Hive中常用的列式存储格式。
  • 使用 LOCATION 指定了表的存储路径。
  • 使用 TBLPROPERTIES ("orc.compress"="snappy") 设置了压缩算法为SNAPPY,对数据进行压缩存储。

Hive支持的常用文件格式

  • ORC(Optimized Row Columnar):列式存储格式,提供高压缩比和高性能的查询。

  • Parquet:另一种列式存储格式,支持高效的压缩和查询。

  • Text:文本文件格式,易于阅读和处理。

  • SequenceFile:Hadoop中的二进制文件格式,适合大数据存储和处理。
    Hive支持的常用压缩算法

  • SNAPPY:快速压缩算法,提供较高的压缩比和速度。

  • GZIP:通用的压缩算法,提供较高的压缩比,但速度相对较慢。

  • LZO:高效的压缩算法,支持快速压缩和解压缩,适合大数据处理。

  • BZIP2:提供更高的压缩比,但速度较慢,适合对存储空间要求较高的场景。


在选择压缩算法时,一般可以考虑以下几个因素

  1. 压缩比:不同的压缩算法具有不同的压缩比,一般来说,压缩比越高,存储空间占用越小,但可能会影响查询性能。
  2. 压缩速度:有些压缩算法压缩速度较快,适合对数据进行频繁压缩,而有些压缩算法压缩速度较慢,但压缩比较高。
  3. 解压速度:压缩算法解压速度也是一个重要考虑因素,因为查询时需要解压数据。
相关推荐
萤丰信息33 分钟前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地
ClouGence1 小时前
CloudDM 新增支持 GaussDB 与 openGauss:国产数据库管理更高效
数据库·sql·ci/cd
Viking_bird2 小时前
Apache Spark 3.2.0 开发测试环境部署指南
大数据·分布式·ajax·spark·apache
用户199701080183 小时前
抖音商品列表API技术文档
大数据·数据挖掘·数据分析
数据皮皮侠5 小时前
最新上市公司业绩说明会文本数据(2017.02-2025.08)
大数据·数据库·人工智能·笔记·物联网·小程序·区块链
计算机毕设-小月哥7 小时前
完整源码+技术文档!基于Hadoop+Spark的鲍鱼生理特征大数据分析系统免费分享
大数据·hadoop·spark·numpy·pandas·计算机毕业设计
Jinkxs7 小时前
AI重塑金融风控:从传统规则到智能模型的信贷审批转型案例
大数据·人工智能
时序数据说14 小时前
时序数据库市场前景分析
大数据·数据库·物联网·开源·时序数据库
2501_9301040419 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着19 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎