生成对抗网络(GANs)总结

你好,我是郭震

生成对抗网络(GANs)是一种深度学习模型,它由两部分组成:生成器(Generator)判别器(Discriminator)

这种模型通过一个对抗的训练过程来生成接近真实的数据。

GANs在图像生成、语音合成、文本到图像转换 等领域展示了其强大的能力

核心概念

生成器(Generator)

  • 功能 :生成器G是一个深度神经网络,其目标是从随机噪声中生成逼真的数据。它试图创建的数据应足以欺骗判别器,使判别器认为这些数据是真实的。

  • 输入:随机噪声,通常来源于某种概率分布,如正态分布。

  • 输出 :生成的数据,旨在模仿真实世界数据的分布

判别器(Discriminator)

  • 功能 :判别器D也是一个深度神经网络,其任务是区分输入数据是来自于真实数据集还是生成器G产生的

  • 输入:真实数据或生成器产生的数据。

    输出:一个概率值,表示输入数据为真实数据的可能性。

通俗解释:

生成对抗网络(GAN)可以用一个通俗的比喻来解释:想象一个画家(生成器)正在学习如何画出非常逼真的伪造画作,而有一个艺术鉴赏家(判别器)则试图区分出这些画作是真品还是伪造品。开始时,画家的技术可能还不成熟,画出的作品容易被鉴赏家识破。但随着时间的推移,画家从鉴赏家的判断中学习,不断提高自己的画技,使得作品越来越难以被辨认。

在这个比喻中,画家不断尝试创建更逼真的艺术作品,目的是要让鉴赏家无法区分其作品是真是假。而鉴赏家则不断提高自己的辨别能力,以识别出哪些是真正的艺术作品,哪些是伪造的。这个过程就是一种"对抗"的过程,双方都在不断学习和适应对方的策略。

在GAN的训练过程中,生成器(画家)学习如何生成数据(画作),尽量模仿真实的数据分布,而判别器(鉴赏家)则学习如何区分真实数据和生成器生成的数据。最终的目标是让生成器能够生成非常逼真的数据,以至于判别器无法区分生成的数据和真实的数据。

训练过程

GAN的训练涉及到以下步骤:

  1. 训练判别器 :固定生成器G,更新判别器D。使用真实数据和生成的数据训练D,目标是正确分类真实数据和生成数据

  2. 训练生成器 :固定判别器D,更新生成器G。通过生成数据并尝试欺骗判别器,来提高生成器的生成能力。

目标函数

GAN的目标函数反映了生成器和判别器之间的对抗性质。理想状态下,生成器生成的数据无法被判别器区分。这可以通过以下目标函数来描述:

其中:

  • 是判别器和生成器的价值函数。

  • 是判别器对于真实数据的判别结果。

  • 是生成器基于输入噪声生成的数据。

  • 是真实数据的分布。

  • 是生成器输入的噪声分布。

训练的目标是通过调整和的参数,找到使最小的G和使最大的

结论

生成对抗网络通过生成器和判别器之间的对抗训练,能够生成高度逼真的数据。

其成功的关键在于找到一个平衡点,即生成器能够生成足够好的数据,使得判别器不能轻易区分真实数据与生成数据。这一过程不仅对深入理解数据分布有重要意义,也为机器学习和人工智能领域的应用开辟了新的可能性。更多:https://zglg.work

相关推荐
灯火不休时3 分钟前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.82427 分钟前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub39 分钟前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI1 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
国产化创客1 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)1 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路1 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶
xier_ran2 小时前
Transformer:Decoder 中,Cross-Attention 所用的 K(Key)和 V(Value)矩阵,是如何从 Encoder 得到的
深度学习·矩阵·transformer