Spark 搭建模式(本地、伪分布、全分布模式)

Spark搭建模式

Standalone模式

环境搭建

1.伪分布式
shell 复制代码
#1.进入$SPARK_HOME/conf
[root@master ~] cd $SPARK_HOME/conf

#2.拷贝spark-env.sh.template
[root@master conf] cp spark-env.sh.template spark-env.sh
[root@master conf] vi spark-env.sh

# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers

---注意:Spark Standalone模式架构与Hadoop HDFS/YARN 类似   1个master 2个Woker

#3.添加以下:
SPARK_MASTER_HOST=master
SPARK_WORKER_CORES=2 #一个从节点分2个Core
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_INSTANCES=1 #一个woker启动一个示例

#4.启动standalone模式
[root@master sbin] start-master.sh

---注意:Alivee Worker:1 原因是SPARK_WORKER_INSTANCES=1
shell 复制代码
#测试:一台机器一个节点启动多个worker实例

#1.修改
SPARK_WORKER_INSTANCES=2

#2.启动
[root@master sbin] start-master.sh
2.全分布式
shell 复制代码
#全分布式Spark搭建

#1.修改spark-env.sh
SPARK_MASTER_HOST=master
SPARK_WORKER_CORES=2 #一个从节点分2个Core
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_INSTANCES=2

#2.拷贝slaves.template
[root@master conf]cp slaves.template slaves

#3修改Slaves
master:master
slave1:worker
slave2:woker
---注意:把所有的worker节点配置到slaves,若master也想要worker,也可添加入内
slave1
slave2

#4.分发
[root@master conf]scp -r /usr/local/src/spark slave1:/usr/local/src
[root@master conf]scp -r /usr/local/src/spark slave2:/usr/local/src

操作使用

shell 复制代码
[root@master conf] spark-shell spark://master:7077

---注意:多次启动拿不到Core,状态为Wating

Local模式

shell 复制代码
#1.解压spark
略
#2.配置环境变量
略
#3.直接启动
[root@master ~] spark-shell --master local[2]

Spark-shell帮助手册

shell 复制代码
[root@CQ-WEB-Centos1 conf]# spark-shell --help
Usage: ./bin/spark-shell [options]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.

  --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.
                              This argument does not work with --principal / --keytab.

  --help, -h                  Show this help message and exit.
  --verbose, -v               Print additional debug output.
  --version,                  Print the version of current Spark.

 Spark standalone with cluster deploy mode only:
  --driver-cores NUM          Cores for driver (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)

 YARN-only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.

词频统计测试案例

scala 复制代码
scala>val file=spark.sparkContext.textFile("")

scala>val wordcount=file.flatmap(line=>line.split(",")).map((word=>(word,1))).reduceByKey(_+_)

scala>wordcount.collect()

计测试案例

scala 复制代码
scala>val file=spark.sparkContext.textFile("")

scala>val wordcount=file.flatmap(line=>line.split(",")).map((word=>(word,1))).reduceByKey(_+_)

scala>wordcount.collect()
相关推荐
Hello World......2 小时前
Java求职面试揭秘:从Spring到微服务的技术挑战
大数据·hadoop·spring boot·微服务·spark·java面试·互联网大厂
yyywoaini~6 小时前
idea中编写spark程序
spark
却道天凉_好个秋7 小时前
系统架构设计(九):分布式架构与微服务
分布式·架构·系统架构
数据与人工智能律师8 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
RestCloud8 小时前
国产ETL数据集成软件和Informatica 相比如何
数据仓库·etl·数据集成工具·集成平台·informatica
尘客.9 小时前
DataX从Mysql导数据到Hive分区表案例
数据库·hive·mysql
一只专注api接口开发的技术猿9 小时前
企业级电商数据对接:1688 商品详情 API 接口开发与优化实践
大数据·前端·爬虫
古拉拉明亮之神9 小时前
Spark处理过程-转换算子
javascript·ajax·spark
predisw11 小时前
kafka connect 大概了解
分布式·kafka
今天我又学废了11 小时前
Spark,SparkSQL操作Mysql, 创建数据库和表
大数据·mysql·spark