备战蓝桥杯Day25 - 二叉搜索树

一、基本概念

二叉搜索树(Binary Search Tree),又称为二叉查找树或二叉排序树,是一种具有特定性质的二叉树。

  1. 定义:二叉搜索树可以是一棵空树,也可以是具有以下特性的非空二叉树:

    • 若其左子树不空,则左子树上所有结点的值均小于其根结点的值。
    • 若其右子树不空,则右子树上所有结点的值均大于其根结点的值。
    • 它的左、右子树也分别为二叉排序树。
  2. 结构:二叉搜索树是以二叉树的形式组织的,通常可以使用链表数据结构来表示。每个结点除了包含关键字(key)和可能的其他数据外,还包含指向其左孩子(lchild)和右孩子(rchild)的指针,以及指向其父结点(parent)的指针(如果需要的话)。如果某个孩子结点或父结点不存在,则相应属性的值为空(NIL)。

  3. 元素特性:二叉搜索树中存储的元素必须具备可比较性,例如整数(int)或浮点数(double)等。如果是自定义类型,需要指定比较方式。

  4. 应用:二叉搜索树作为一种经典的数据结构,具有链表快速插入与删除操作的特点和数组快速查找的优势。因此,它在许多场合下都有广泛的应用,如在文件系统和数据库系统中用于高效的排序与检索操作。

二叉搜索树是一种非常有效的数据结构,它能够保持数据的有序性,同时提供快速的查找、插入和删除操作。

二、插入操作实现

代码实现

python 复制代码
# 定义树的节点
class BiTreeNode:
    def __init__(self, data):
        self.data = data
        self.lchild = None
        self.rchild = None
        self.parent = None


class BST:
    def __init__(self):  # 初始化二叉搜索树
        self.root = None

    def insert(self, node, val):  # 递归定义插入
        if not node:
            node = BiTreeNode(val)  # 如果是空树,那么直接创建新的节点插入
        elif val < node.data:  # 当插入的值小于根节点,就向左子树插入
            node.lchild = self.insert(node.lchild, val)  # 调用递归函数实现插入节点
            node.lchild.parent = node   # 并与父节点链接起来

        elif val > node.data: # 当插入的值大于根节点,就向右子树插入
            node.rchild = self.insert(node.rchild, val)  # 调用递归函数实现插入节点
            node.rchild.parent = node  # 并与父节点链接起来
        return node

    def insert_no_rec(self, val):  # 非递归定义插入  在下面详细解释
        p = self.root
        if not p:   # 空树
            self.root = BiTreeNode(val)  # 空树时直接新建节点插入即可
            return
        while True:
            if val < p.data:
                if p.lchild:  # 左孩子存在
                    p = p.lchild
                else:   # 左孩子不存在时直接创建节点插入
                    p.lchild = BiTreeNode(val)
                    p.lchild.parent = p
            elif val > p.data:
                if p.rchild:  # 右孩子存在
                    p = p.rchild
                else:  # 右孩子不存在时直接创建节点插入
                    p.rchild = BiTreeNode(val)
                    p.rchild.parent = p
                    return
            else:
                return

非递归插入详细过程

使用非递归函数插入数据详细过程

1、随便定义一颗二叉搜索树(非空),将val = 12 插入到树中 。通过循环比较来实现数值的插入。

先将定义的 p 指针指向根节点,然后开始 val 与 根节点数值的比较。

2、 根据图中数值可知, val = 12 < p.data = 17,且 p点的左孩子 (p.lchild)存在,那么 p 指针向下移动,只执行 if val < p.data: 这块代码,变为如下图所示。

python 复制代码
 while True:
            if val < p.data:
                if p.lchild:
                    p = p.lchild
                else:
                    p.lchild = BiTreeNode(val)
                    p.lchild.parent = p

3.此时, val = 12 < p.data = 13,且 p点的左孩子 (p.lchild)存在,执行 p = p.lchild 语句,那么 p 指针向下移动,变为如下图所示。

4.此时, val = 12 > p.data = 7, 那么他要往右子树进行插入,且p.data 的右孩子不存在,就直接创建新的节点进行插入即可。

python 复制代码
 elif val > p.data:
                if p.rchild:  # 右孩子存在
                    p = p.rchild
                else:  # 右孩子不存在时直接创建节点插入
                    p.rchild = BiTreeNode(val)
                    p.rchild.parent = p
                    return

最后插入结果为:

测试结果

对定义的函数进行测试,分别以先序,中序,后序输出。中序遍历都是从小到大输出,可以用作一种排序。

python 复制代码
import random
class BiTreeNode:
    def __init__(self, data):
        self.data = data
        self.lchild = None
        self.rchild = None
        self.parent = None


class BST:
    def __init__(self, li=None):
        self.root = None
        if li:
            for val in li:
                self.insert_no_rec(val)

    def insert(self, node, val):  # 递归定义插入
        if not node:
            node = BiTreeNode(val)
        elif val < node.data:
            node.lchild = self.insert(node.lchild, val)
            node.lchild.parent = node
        elif val > node.data:
            node.rchild = self.insert(node.rchild, val)
            node.rchild.parent = node
        return node

    def insert_no_rec(self, val):
        p = self.root
        if not p:   # 空树
            self.root = BiTreeNode(val)
            return
        while True:
            if val < p.data:
                if p.lchild:
                    p = p.lchild
                else:
                    p.lchild = BiTreeNode(val)
                    p.lchild.parent = p
            elif val > p.data:
                if p.rchild:
                    p = p.rchild
                else:
                    p.rchild = BiTreeNode(val)
                    p.rchild.parent = p
                    return
            else:
                return

    def pre_order(self, root):
        if root:
            print(root.data, end=",")
            self.pre_order(root.lchild)
            self.pre_order(root.rchild)

    def in_order(self, root):
        if root:
            self.in_order(root.lchild)
            print(root.data, end=",")
            self.in_order(root.rchild)

    def post_order(self, root):
        if root:
            self.post_order(root.lchild)
            self.post_order(root.rchild)
            print(root.data, end=",")


li = list(range(0, 10))
random.shuffle(li)

tree = BST(li)
tree.pre_order(tree.root)  # 先序
print(" ")
tree.in_order(tree.root)   # 中序
print(" ")
tree.post_order(tree.root) # 后序

输出结果

相关推荐
梧桐树04292 小时前
python常用内建模块:collections
python
Dream_Snowar2 小时前
速通Python 第三节
开发语言·python
XH华3 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生3 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_3 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子3 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡4 小时前
滑动窗口 + 算法复习
数据结构·算法
蓝天星空4 小时前
Python调用open ai接口
人工智能·python
Lenyiin4 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
jasmine s4 小时前
Pandas
开发语言·python