AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。

深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。

建立一个卷积神经网络,用来识别通过 6×6 像素的图像读取的手写数字 1、2、3。图像的像素为单色二值。

上图中的圈表示神经单元,隐藏层由多个具有结构的层组成。具体来说,隐藏层是多个由卷积层和池化层构成的层组成的,这就是简单原始的卷积神经网络。

那么仔细看上图,我们其实可以从中看出卷积神经网络的数学结构。当输入层接收到数据后,经过卷积到隐藏层中的卷积层,卷积层简化后到池化层,最终到输入层进行输出。那么到底是怎样进行卷积和简化的呢?接下来我们就来讲解一下。

其实原理十分简单。对于隐藏层的神经元会用3×3(通常是5×5)的方阵去扫描输入层的数据,主动去探索其需要的偏好,再利用相似整合为一个神经单元的信号和,就得到了卷积层,卷积层再通过这个方法得到池化层,最终通过相似度得出最后的结果。实际上,在隐藏层中,有很多层,不停的卷积简化,由一个很大的输入层最后得到一个值,而通过层层卷积,这就是"深"就是深度学习,而这个结构组成的就是卷积神经网络。

对比之前我们在(一)(二)(三)中提到的简单神经,卷积神经网络有如下优点:

  • 对于复杂的模式识别问题,也可以用简洁的网络来处理。
  • 整体而言,因为神经单元的数量少了,所以计算比较轻松。

我们通过例题再仔细来看一下。

其偏好为S

通过扫描我们可以得到如下结果

我们将结果进行汇总如下,我们将偏好S称为过滤器,而由过滤器卷积得到的下图结果成为特征映射。

相关推荐
ElfBoard1 分钟前
ElfBoard技术贴|如何在【RK3588】ELF 2开发板实现GPIO功能复用
linux·人工智能·单片机·嵌入式硬件·物联网·机器人
崎岖Qiu5 分钟前
【设计模式笔记19】:建造者模式
java·笔记·设计模式·建造者模式
SUPER52663 小时前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪8 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩8 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方8 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
锦瑟弦音8 小时前
微信小游戏分包(cocos自带分包)
笔记·游戏
木头左8 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案9 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者9 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能