AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。

深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。

建立一个卷积神经网络,用来识别通过 6×6 像素的图像读取的手写数字 1、2、3。图像的像素为单色二值。

上图中的圈表示神经单元,隐藏层由多个具有结构的层组成。具体来说,隐藏层是多个由卷积层和池化层构成的层组成的,这就是简单原始的卷积神经网络。

那么仔细看上图,我们其实可以从中看出卷积神经网络的数学结构。当输入层接收到数据后,经过卷积到隐藏层中的卷积层,卷积层简化后到池化层,最终到输入层进行输出。那么到底是怎样进行卷积和简化的呢?接下来我们就来讲解一下。

其实原理十分简单。对于隐藏层的神经元会用3×3(通常是5×5)的方阵去扫描输入层的数据,主动去探索其需要的偏好,再利用相似整合为一个神经单元的信号和,就得到了卷积层,卷积层再通过这个方法得到池化层,最终通过相似度得出最后的结果。实际上,在隐藏层中,有很多层,不停的卷积简化,由一个很大的输入层最后得到一个值,而通过层层卷积,这就是"深"就是深度学习,而这个结构组成的就是卷积神经网络。

对比之前我们在(一)(二)(三)中提到的简单神经,卷积神经网络有如下优点:

  • 对于复杂的模式识别问题,也可以用简洁的网络来处理。
  • 整体而言,因为神经单元的数量少了,所以计算比较轻松。

我们通过例题再仔细来看一下。

其偏好为S

通过扫描我们可以得到如下结果

我们将结果进行汇总如下,我们将偏好S称为过滤器,而由过滤器卷积得到的下图结果成为特征映射。

相关推荐
郑清7 分钟前
Spring AI Alibaba 10分钟快速入门
java·人工智能·后端·ai·1024程序员节·springaialibaba
学术头条7 分钟前
用视觉压缩文本!清华、智谱推出Glyph框架:通过视觉-文本压缩扩展上下文窗口
人工智能·深度学习·计算机视觉
Mrliu__34 分钟前
Opencv(一): 用Opencv了解图像
人工智能·opencv·计算机视觉
墨香幽梦客1 小时前
掌控制造脉络:电子元器件行业常用ERP系统概览与参考指南
大数据·人工智能
大模型知识营地2 小时前
详解 astream 方法与 stream_mode,构建高级人机交互 Agent
人工智能
charlie1145141913 小时前
HTML 理论笔记
开发语言·前端·笔记·学习·html·1024程序员节
知行力3 小时前
百度PaddleOCR-VL:基于0.9B超紧凑视觉语言模型,支持109种语言,性能超越GPT-4o等大模型
人工智能·百度·1024程序员节
deephub3 小时前
vLLM 性能优化实战:批处理、量化与缓存配置方案
人工智能·python·大语言模型·1024程序员节·vllm
云飞云共享云桌面3 小时前
东莞精密机械制造工厂5个SolidWorks设计共享一套软件
运维·服务器·网络·人工智能·自动化·制造
Theodore_10223 小时前
机器学习(9)正则化
人工智能·深度学习·机器学习·计算机视觉·线性回归·1024程序员节