AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。

深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。

建立一个卷积神经网络,用来识别通过 6×6 像素的图像读取的手写数字 1、2、3。图像的像素为单色二值。

上图中的圈表示神经单元,隐藏层由多个具有结构的层组成。具体来说,隐藏层是多个由卷积层和池化层构成的层组成的,这就是简单原始的卷积神经网络。

那么仔细看上图,我们其实可以从中看出卷积神经网络的数学结构。当输入层接收到数据后,经过卷积到隐藏层中的卷积层,卷积层简化后到池化层,最终到输入层进行输出。那么到底是怎样进行卷积和简化的呢?接下来我们就来讲解一下。

其实原理十分简单。对于隐藏层的神经元会用3×3(通常是5×5)的方阵去扫描输入层的数据,主动去探索其需要的偏好,再利用相似整合为一个神经单元的信号和,就得到了卷积层,卷积层再通过这个方法得到池化层,最终通过相似度得出最后的结果。实际上,在隐藏层中,有很多层,不停的卷积简化,由一个很大的输入层最后得到一个值,而通过层层卷积,这就是"深"就是深度学习,而这个结构组成的就是卷积神经网络。

对比之前我们在(一)(二)(三)中提到的简单神经,卷积神经网络有如下优点:

  • 对于复杂的模式识别问题,也可以用简洁的网络来处理。
  • 整体而言,因为神经单元的数量少了,所以计算比较轻松。

我们通过例题再仔细来看一下。

其偏好为S

通过扫描我们可以得到如下结果

我们将结果进行汇总如下,我们将偏好S称为过滤器,而由过滤器卷积得到的下图结果成为特征映射。

相关推荐
爱打代码的小林5 分钟前
用 PyTorch 实现 CBOW 模型
人工智能·pytorch·python
Deepoch6 分钟前
Deepoc具身模型开发板:让农业采摘机器人智能化升级更简单
人工智能·科技·农业·采摘机器人·农业机器人·deepoc·具身模型开发板
北巷`7 分钟前
大模型应用的模型架构和核心技术原理-以DeepSeek对话助手为例分析
人工智能
CDA数据分析师干货分享9 分钟前
【干货】CDA一级知识点拆解3:《CDA一级商业数据分析》第3章 商业数据分析框架
大数据·人工智能·数据挖掘·数据分析·cda证书·cda数据分析师
Coding茶水间9 分钟前
基于深度学习的花朵识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
GAOJ_K10 分钟前
滚柱导轨润滑周期预测
人工智能·科技·自动化·制造
致Great12 分钟前
Kimi K2.5技术报告解读:视觉-文本联合训练与并行智能体框架
人工智能
阿杰学AI13 分钟前
AI核心知识82——大语言模型之AI Value Alignment(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·机械学习·ai价值观对齐
小镇cxy13 分钟前
OpenSpec 规范开发
人工智能·ai
北京地铁1号线14 分钟前
4.2 幻觉抑制策略
大数据·人工智能·深度学习·大语言模型