AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。

深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。

建立一个卷积神经网络,用来识别通过 6×6 像素的图像读取的手写数字 1、2、3。图像的像素为单色二值。

上图中的圈表示神经单元,隐藏层由多个具有结构的层组成。具体来说,隐藏层是多个由卷积层和池化层构成的层组成的,这就是简单原始的卷积神经网络。

那么仔细看上图,我们其实可以从中看出卷积神经网络的数学结构。当输入层接收到数据后,经过卷积到隐藏层中的卷积层,卷积层简化后到池化层,最终到输入层进行输出。那么到底是怎样进行卷积和简化的呢?接下来我们就来讲解一下。

其实原理十分简单。对于隐藏层的神经元会用3×3(通常是5×5)的方阵去扫描输入层的数据,主动去探索其需要的偏好,再利用相似整合为一个神经单元的信号和,就得到了卷积层,卷积层再通过这个方法得到池化层,最终通过相似度得出最后的结果。实际上,在隐藏层中,有很多层,不停的卷积简化,由一个很大的输入层最后得到一个值,而通过层层卷积,这就是"深"就是深度学习,而这个结构组成的就是卷积神经网络。

对比之前我们在(一)(二)(三)中提到的简单神经,卷积神经网络有如下优点:

  • 对于复杂的模式识别问题,也可以用简洁的网络来处理。
  • 整体而言,因为神经单元的数量少了,所以计算比较轻松。

我们通过例题再仔细来看一下。

其偏好为S

通过扫描我们可以得到如下结果

我们将结果进行汇总如下,我们将偏好S称为过滤器,而由过滤器卷积得到的下图结果成为特征映射。

相关推荐
路上阡陌18 分钟前
Java学习笔记(二十四)
java·笔记·学习
束照1 小时前
noteboolm 使用笔记
笔记·notebooklm
速融云1 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
安冬的码畜日常1 小时前
【Vim Masterclass 笔记23】第十章:Vim 缓冲区与多窗口的用法概述 + S10L42:Vim 缓冲区的用法详解与多文件编辑
笔记·vim·buffer·vim缓冲区·vim buffer·vim多文件编辑·vim多文件
AI明说2 小时前
什么是稀疏 MoE?Doubao-1.5-pro 如何以少胜多?
人工智能·大模型·moe·豆包
XianxinMao2 小时前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
初九之潜龙勿用2 小时前
我的创作纪念日,纪念我的第512天
笔记
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上3 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy3 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析