AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。

深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。

建立一个卷积神经网络,用来识别通过 6×6 像素的图像读取的手写数字 1、2、3。图像的像素为单色二值。

上图中的圈表示神经单元,隐藏层由多个具有结构的层组成。具体来说,隐藏层是多个由卷积层和池化层构成的层组成的,这就是简单原始的卷积神经网络。

那么仔细看上图,我们其实可以从中看出卷积神经网络的数学结构。当输入层接收到数据后,经过卷积到隐藏层中的卷积层,卷积层简化后到池化层,最终到输入层进行输出。那么到底是怎样进行卷积和简化的呢?接下来我们就来讲解一下。

其实原理十分简单。对于隐藏层的神经元会用3×3(通常是5×5)的方阵去扫描输入层的数据,主动去探索其需要的偏好,再利用相似整合为一个神经单元的信号和,就得到了卷积层,卷积层再通过这个方法得到池化层,最终通过相似度得出最后的结果。实际上,在隐藏层中,有很多层,不停的卷积简化,由一个很大的输入层最后得到一个值,而通过层层卷积,这就是"深"就是深度学习,而这个结构组成的就是卷积神经网络。

对比之前我们在(一)(二)(三)中提到的简单神经,卷积神经网络有如下优点:

  • 对于复杂的模式识别问题,也可以用简洁的网络来处理。
  • 整体而言,因为神经单元的数量少了,所以计算比较轻松。

我们通过例题再仔细来看一下。

其偏好为S

通过扫描我们可以得到如下结果

我们将结果进行汇总如下,我们将偏好S称为过滤器,而由过滤器卷积得到的下图结果成为特征映射。

相关推荐
不会代码的小猴17 分钟前
Linux环境编程第六天笔记--system-V IPC
linux·笔记
DisonTangor35 分钟前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
乌恩大侠37 分钟前
【笔记】USRP 5G 和 6G 参考架构
笔记·5g
薛定谔的猫198240 分钟前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了1 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx1 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队1 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒1 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6002 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房2 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai