零一万物自研全导航图向量数据库,横扫权威榜单6项第一

3 月 11 日,零一万物宣布推出基于全导航图的新型向量数据库 「笛卡尔(Descartes)」,已包揽权威榜单 ANN-Benchmarks 6 项数据集评测第一名。

向量数据库,又被称为 AI 时代的信息检索技术,是检索增强生成(Retrieval-Augmented Generation, RAG)内核技术之一。对大模型应用开发者来说,向量数据库是非常重要的基础设施,在一定程度上影响着大模型的性能表现。

在国际权威评测平台 ANN-Benchmarks 离线测试中,零一万物笛卡尔(Descartes)向量数据库登顶 6 份数据集评测第一名,比之前榜单上同业第一名有显著性能提升,部分数据集上的性能提升甚至超过 2 倍以上。

零一万物表示,笛卡尔向量数据库将用在近期即将正式亮相的 AI 产品中,未来也将结合工具提供给开发者。

向量数据库成 AI 2.0 基础设施

获资本市场青睐

随着大模型为代表的 AI 2.0 时代到来,图片、视频、自然语言等多模态的非结构化数据量陡增,区别于用来处理结构化数据的传统数据库。向量数据库专门用来存储、管理、查询和检索向量化的非结构化数据;它就像一块外接的记忆盘,可供大模型随时调用,以形成「长期记忆」,也被昵称为大模型记忆的「海马体」。

大模型天然有四个缺陷,向量数据库就像是量身定制的「特效药」,能精准解决每个痛点。

  • 实时信息:大模型训练时间长,更新慢,无法反应最新的信息,其知识存在「截止期」的挑战。向量数据库采用轻量化更新机制,可以快速补充最新信息。

  • 隐私保护:用户的安全隐私数据不宜直接提供给大模型训练,否则会有泄密风险,向量数据通过在推理阶段扮演信息传递的中间载体,破解了隐私保护的难关。

  • 幻觉矫正:大模型常表现出的推理失真或产生幻觉的现象,可以通过向量数据库提供的丰富知识参照,有效矫正和减轻此类问题。

  • 推理效率:大模型推理成本高,向量数据库能够作为一种缓存机制,避免每一次查询请求都需要重新执行复杂的推理计算,大大节省了计算资源。

AI 2.0 掀起的科技变革和平台变革,进一步强化了向量数据库的作用。Google、微软、Meta 等大厂的相关产品先后问世,Zilliz、Pinecone、Weaviate、Qdrant 等创业公司也异军突起。2023 年,OpenAI 的向量数据库合作方 Pinecone 完成了 B 轮 1.38 亿美元融资,国内初创企业 Fabarta ArcNeural 也完成了上亿元 Pre-A 轮融资。

挑战权威榜单

****包揽评测六项第一

ANN-Benchmarks 是当下业界最权威的向量数据库性能测试工具,它可以展示不同算法在不同真实数据集下的表现。

在以下 6 份评测数据集涵盖 glove-25-angular、glove-100-angular、sift-128-euclidean、nytimes-256-angular、fashion-mnist-784-euclidean、gist-960-euclidean 六大数据集,横坐标代表召回、纵坐标代表 QPS (每秒内处理的请求数),曲线位置越偏右上角意味着算法性能越好,零一万物笛卡尔向量数据库在 6 项数据集评测中都处于最高位。

截至 3 月 10 日,ANN-Benchmarks6 项评测中,零一万物笛卡尔(Descartes)向量数据库均居第一

「吞吐量 QPS」 是衡量信息检索系统(例如搜索引擎或数据库)查询处理能力的重要指标。在原榜单 TOP1 基础上,零一万物笛卡尔向量数据库实现了显著性能提升,部分数据集上的性能提升超过 2 倍以上,在 gist-960-euclidean 数据集维度更大幅领先榜单原 TOP1 286%。

零一万物笛卡尔向量数据库与原榜单 TOP1 QPS 性能对比

技术揭秘

令人好奇的是,笛卡尔如何实现上述优秀性能?

众所周知,RAG 是一种结合了检索和生成的技术,它通过从海量数据中检索查询到的信息,来增强语言模型的生成能力。和传统检索方法类似,从本质上讲,RAG 向量检索主要解决两大问题:

  1. 通过建立某种索引结构,减少检索考察的候选集;

  2. 降低单个向量计算的复杂度。

零一万物笛卡尔向量数据库在处理复杂查询、提高检索效率以及优化数据存储方面相比业界拥有显著的比较优势。针对第 1 个问题,零一万物团队有两大杀手锏:

  • **领先的全导航图技术。**目前业内现状主要通过哈希、KD-Tree、VP-Tree 等方式,导航效果不够精确,裁剪力度不够,零一万物研发的全局多层缩略图导航技术,图上坐标系导航,既能保证精度,又能裁剪大量无关向量。

  • **首创自适应邻居选择策略,填补业界空白。**零一万物自研的自适应邻居选择策略,突破了以往仅依赖真实 topk 或固定边选择策略的局限,新策略使每个节点可以根据自身及邻居的分布特征动态地选取最佳邻居边,更快收敛接近目标向量,从而让 RAG 向量检索性能提高 15%-30%。

针对第 2 个问题,零一万物采用了两级量化方案增强 RAG。零一万物用两级量化降低计算复杂度,同时列式存储充分利用 SIMD 的并发能力,进一步发挥硬件能力,相比传统 PQ 查表,性能得到大幅提升到 2-3 倍。

除此之外,零一万物还有索引结构优化、连通性保障等全栈向量技术方案提高笛卡尔向量数据库的性能。

全栈向量技术:精度更高、性能更强

通过上述全栈向量技术的加持,让零一万物笛卡尔向量数据库不仅登顶权威榜单 ANN-Benchmarks6 项评测第一名。更在实际应用场景中具有精度更高、性能更强等核心优势。

零一万物笛卡尔向量数据库目前聚焦于高性能向量数据库。高性能向量数据库通常是指向量数据集规模在千万级及以下(如 2000 万 128 维浮点型向量),通常而言,高性能向量数据库可以轻松应对百分之八九十的日常场景,比如帮助企业客户构建私域知识库、智能客服系统;在自动驾驶领域,使用高性能向量数据库可来加速自动驾驶模型训练等。

零一万物高性能向量数据库具有以下优点:

  • **超高精度:**基于多层缩略图和坐标系实现层间导航和图上方位导航,以及图连通性保障,实现精度大于 99%,相同性能下,精度大幅领先业内水平。

  • **超高性能:**高效的边选择和裁剪技术,千万数据库 ms 响应。

以电商推荐场景为例,上架商品数量可能千万级,每个商品可以由一个向量表达。即使库中向量数不算很大,如果电商用户基数非常庞大,高峰时每秒用户请求数非常大,可能达到几十万甚至上百万的 QPS。使用高性能向量数据库可以有效提升电商场景里面搜索、广告业务的推荐效果,让大家忍不住一直买买买。

零一万物表示,笛卡尔向量数据库是团队基于 RAG 的初步尝试,将在近期发布的 AI 生产力产品中得到有效应用。未来各家大模型优化到一定程度后,向量数据库的能力可能决定各家大模型的天花板。零一万物后续会持续专注研发和分享,为用户带来更好的技术和体验。

相关推荐
小天努力学java17 分钟前
AI赋能传统系统:Spring AI Alibaba如何用大模型重构机票预订系统?
人工智能·spring
Fuweizn34 分钟前
在工业生产中,物料搬运环节至关重要,搬运机器人开启新篇章
人工智能·智能机器人·复合机器人
技术员阿伟1 小时前
《AI赋能星际探索:机器人如何开启宇宙新征程!》
人工智能
AL.千灯学长2 小时前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
LCG元2 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong3 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨3 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
猫头虎-人工智能3 小时前
NVIDIA A100 SXM4与NVIDIA A100 PCIe版本区别深度对比:架构、性能与场景解析
gpt·架构·机器人·aigc·文心一言·palm
一ge科研小菜鸡3 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河3 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型