OpenCV 配置 VS 2022并识别人脸框出

文章目录

前言

在计算机视觉领域,人脸识别是一项具有挑战性且备受关注的任务。借助于开源的计算机视觉库OpenCV,我们可以轻松实现人脸识别功能,并通过在识别出的人脸周围绘制边界框的方式来突出显示人脸位置。本篇博客将介绍如何配置环境,然后使用C++和OpenCV库读取图像、进行人脸识别,并框出识别到的人脸。

一、什么是OpenCV?

OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉和图像处理库,提供了大量的图像处理和计算机视觉算法。它由一系列C++、Python和其他编程语言的函数和类组成,可以在多个平台上运行,包括Windows、Linux、macOS等。OpenCV包含了许多用于处理图像、视频、特征检测、目标识别、机器学习等任务的函数和模块,使开发者能够快速构建各种计算机视觉应用。

二、OpenCV的安装和配置

1. OpenCV 下载

链接: https://opencv.org/

此链接为open cv 官网,可以在官网下载windows版本。

点击library,接着选择release选项,下载windows的opencv-4.9.0版本安装包

2. 安装

点击安装包进行安装,本人安装在d盘中

安装好后安装目录的内容展示如图


3. 配置环境变量



把bin和lib文件夹加入环境变量

环境变量就配置好了

4.vs2022环境配置

新建一个项目


点开属性页后,按照下面步骤输入以下两个路径


点击确定,包含目录就配置好了

下面配置库目录,按照步骤,输入路径:D:\opencv\opencv\build\x64\vc15\lib

点击确定

下面配置lib库,将lib的文件名粘贴到空白处,点击确定

我的lib库的名字是490d.lib,大家可能会由于版本的原因导致名字不一样,但后缀都是.lib

新建一个cpp文件

将下列代码输入,运行测试

cpp 复制代码
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;
int main()
{
	Mat img = imread("C:\\Users\\Json\\Downloads\\CatLogo.png");
	namedWindow("Face");
	imshow("Face", img);
	waitKey(0);
	return 0;
}

像这样,能把你的图片放出来,这样就可以了

三、OpenCV识别图片人脸

cpp 复制代码
#include <opencv2/opencv.hpp>

using namespace cv;

int main(int argc, char** argv) {
    // 读取图像文件
    Mat image = imread("C:\\Users\\Json\\Downloads\\face (2).jpeg");
    if (image.empty()) {
        std::cout << "无法读取图像文件" << std::endl;
        return -1;
    }

    // 加载人脸识别分类器
    CascadeClassifier face_cascade;
    if (!face_cascade.load("C:\\Users\\Json\\Downloads\\haarcascade_frontalface_alt.xml")) {
        std::cout << "无法加载人脸识别分类器" << std::endl;
        return -1;
    }

    // 识别人脸
    std::vector<Rect> faces;
    face_cascade.detectMultiScale(image, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));

    // 在图像上绘制边界框
    for (size_t i = 0; i < faces.size(); i++) {
        rectangle(image, faces[i], Scalar(255, 0, 0), 2);
    }

    // 显示结果图像
    imshow("人脸识别结果", image);
    waitKey(0);

    return 0;
}

四、总结

通过本篇博客,我们学习了如何使用OpenCV库来实现简单的人脸识别功能,并通过绘制边界框来标记识别到的人脸位置。人脸识别是计算机视觉领域的一个重要任务,在实际应用中具有广泛的用途。借助于开源库OpenCV,我们可以轻松地实现这一功能,并将其集成到我们的应用程序中。希望本篇博客能够对你理解人脸识别技术和OpenCV库的使用有所帮助。

相关推荐
边缘计算社区15 分钟前
首个!艾灵参编的工业边缘计算国家标准正式发布
大数据·人工智能·边缘计算
游客52026 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主26 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
小俊俊的博客29 分钟前
海康RGBD相机使用C++和Opencv采集图像记录
c++·opencv·海康·rgbd相机
KeyPan30 分钟前
【IMU:视觉惯性SLAM系统】
计算机视觉
7yewh31 分钟前
嵌入式Linux QT+OpenCV基于人脸识别的考勤系统 项目
linux·开发语言·arm开发·驱动开发·qt·opencv·嵌入式linux
深圳南柯电子42 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ43 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter00881 小时前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖1 小时前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉