Apache Paimon 使用之 Lookup Joins 解析

Lookup Join 是流式查询中的一种 Join,Join 要求一个表具有处理时间属性,另一个表由lookup source connector支持。

Paimon支持在主键表和附加表上进行Lookup Join。

a) 准备

创建一个Paimon表并实时更新它。

复制代码
-- Create a paimon catalog
CREATE CATALOG my_catalog WITH (
  'type'='paimon',
  'warehouse'='hdfs://nn:8020/warehouse/path' -- or 'file://tmp/foo/bar'
);

USE CATALOG my_catalog;

-- Create a table in paimon catalog
CREATE TABLE customers (
    id INT PRIMARY KEY NOT ENFORCED,
    name STRING,
    country STRING,
    zip STRING
);

-- Launch a streaming job to update customers table
INSERT INTO customers ...

-- Create a temporary left table, like from kafka
CREATE TEMPORARY TABLE Orders (
    order_id INT,
    total INT,
    customer_id INT,
    proc_time AS PROCTIME()
) WITH (
    'connector' = 'kafka',
    'topic' = '...',
    'properties.bootstrap.servers' = '...',
    'format' = 'csv'
    ...
);
b) Normal Lookup(正常查找)

可以在lookup join query中使用customers

复制代码
-- enrich each order with customer information
SELECT o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;
c) Retry Lookup(重试查找)

在 Flink 1.16+ ,如果Orders记录(主表)没有 Join 上,是因为相应的customers数据(查找表)尚未准备就绪,可以使用Flink的延迟重试策略进行查找。

复制代码
-- enrich each order with customer information
SELECT /*+ LOOKUP('table'='c', 'retry-predicate'='lookup_miss', 'retry-strategy'='fixed_delay', 'fixed-delay'='1s', 'max-attempts'='600') */
o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;
d) Async Retry Lookup(异步重试查找)

同步重试的问题是,一条记录没返回会阻塞后续记录,导致整个作业被阻塞,可以使用async + allow_unordered以避免阻塞。

复制代码
-- enrich each order with customer information
SELECT /*+ LOOKUP('table'='c', 'retry-predicate'='lookup_miss', 'output-mode'='allow_unordered', 'retry-strategy'='fixed_delay', 'fixed-delay'='1s', 'max-attempts'='600') */
o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers /*+ OPTIONS('lookup.async'='true', 'lookup.async-thread-number'='16') */
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;

如果主表(Orders)是CDC流,allow_unordered将被Flink SQL忽略(仅支持附加流),可能阻塞流式任务,可以尝试使用Paimon的audit_log系统表功能(将CDC流转换为附加流)。

8)Query Service

可以运行Flink流作业来启动表的查询服务,当QueryService存在时,Flink Lookup Join将优先从中获取数据,这将有效地提高查询性能。

Flink SQL

复制代码
CALL sys.query_service('database_name.table_name', parallelism);

Flink Action

复制代码
<FLINK_HOME>/bin/flink run \
    /path/to/paimon-flink-action-0.7.0-incubating.jar \
    query_service \
    --warehouse <warehouse-path> \
    --database <database-name> \
    --table <table-name> \
    [--parallelism <parallelism>] \
    [--catalog_conf <paimon-catalog-conf> [--catalog_conf <paimon-catalog-conf> ...]]
相关推荐
上海锝秉工控2 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY2 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj3 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商3 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
Edingbrugh.南空3 小时前
Flink SQLServer CDC 环境配置与验证
数据库·sqlserver·flink
Aurora_NeAr4 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1234 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师4 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空5 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0076 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车