Apache Paimon 使用之 Lookup Joins 解析

Lookup Join 是流式查询中的一种 Join,Join 要求一个表具有处理时间属性,另一个表由lookup source connector支持。

Paimon支持在主键表和附加表上进行Lookup Join。

a) 准备

创建一个Paimon表并实时更新它。

复制代码
-- Create a paimon catalog
CREATE CATALOG my_catalog WITH (
  'type'='paimon',
  'warehouse'='hdfs://nn:8020/warehouse/path' -- or 'file://tmp/foo/bar'
);

USE CATALOG my_catalog;

-- Create a table in paimon catalog
CREATE TABLE customers (
    id INT PRIMARY KEY NOT ENFORCED,
    name STRING,
    country STRING,
    zip STRING
);

-- Launch a streaming job to update customers table
INSERT INTO customers ...

-- Create a temporary left table, like from kafka
CREATE TEMPORARY TABLE Orders (
    order_id INT,
    total INT,
    customer_id INT,
    proc_time AS PROCTIME()
) WITH (
    'connector' = 'kafka',
    'topic' = '...',
    'properties.bootstrap.servers' = '...',
    'format' = 'csv'
    ...
);
b) Normal Lookup(正常查找)

可以在lookup join query中使用customers

复制代码
-- enrich each order with customer information
SELECT o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;
c) Retry Lookup(重试查找)

在 Flink 1.16+ ,如果Orders记录(主表)没有 Join 上,是因为相应的customers数据(查找表)尚未准备就绪,可以使用Flink的延迟重试策略进行查找。

复制代码
-- enrich each order with customer information
SELECT /*+ LOOKUP('table'='c', 'retry-predicate'='lookup_miss', 'retry-strategy'='fixed_delay', 'fixed-delay'='1s', 'max-attempts'='600') */
o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;
d) Async Retry Lookup(异步重试查找)

同步重试的问题是,一条记录没返回会阻塞后续记录,导致整个作业被阻塞,可以使用async + allow_unordered以避免阻塞。

复制代码
-- enrich each order with customer information
SELECT /*+ LOOKUP('table'='c', 'retry-predicate'='lookup_miss', 'output-mode'='allow_unordered', 'retry-strategy'='fixed_delay', 'fixed-delay'='1s', 'max-attempts'='600') */
o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JOIN customers /*+ OPTIONS('lookup.async'='true', 'lookup.async-thread-number'='16') */
FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.id;

如果主表(Orders)是CDC流,allow_unordered将被Flink SQL忽略(仅支持附加流),可能阻塞流式任务,可以尝试使用Paimon的audit_log系统表功能(将CDC流转换为附加流)。

8)Query Service

可以运行Flink流作业来启动表的查询服务,当QueryService存在时,Flink Lookup Join将优先从中获取数据,这将有效地提高查询性能。

Flink SQL

复制代码
CALL sys.query_service('database_name.table_name', parallelism);

Flink Action

复制代码
<FLINK_HOME>/bin/flink run \
    /path/to/paimon-flink-action-0.7.0-incubating.jar \
    query_service \
    --warehouse <warehouse-path> \
    --database <database-name> \
    --table <table-name> \
    [--parallelism <parallelism>] \
    [--catalog_conf <paimon-catalog-conf> [--catalog_conf <paimon-catalog-conf> ...]]
相关推荐
摩羯座-1856903059438 分钟前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
在未来等你1 小时前
Kafka面试精讲 Day 13:故障检测与自动恢复
大数据·分布式·面试·kafka·消息队列
jiedaodezhuti1 小时前
Flink通讯超时问题深度解析:Akka AskTimeoutException解决方案
大数据·flink
庄小焱1 小时前
大数据存储域——Kafka实战经验总结
大数据·kafka·大数据存储域
zskj_qcxjqr2 小时前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
每日新鲜事3 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
在未来等你4 小时前
Kafka面试精讲 Day 15:跨数据中心复制与灾备
大数据·分布式·面试·kafka·消息队列
阿里云大数据AI技术5 小时前
Lazada 如何用实时计算 Flink + Hologres 构建实时商品选品平台
flink
计算机编程-吉哥5 小时前
大数据毕业设计-基于Python的中文起点网小说数据分析平台(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·hadoop·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
阿里云大数据AI技术5 小时前
淘宝闪购基于Flink&Paimon的Lakehouse生产实践:从实时数仓到湖仓一体化的演进之路
数据库·flink