实战 | 基于YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)

导 读

本文主要介绍使用YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)。

实现步骤

监控摄像头可以有效地用于各种场景下的车辆计数和交通流量统计。先进的计算机视觉技术(例如对象检测和跟踪)可应用于监控录像,以识别和跟踪车辆在摄像机视野中移动。

【1】安装ultralytics,因为它拥有直接使用 YoloV9 预训练模型的方法。

复制代码
pip install ultralytics

【2 】完成后,就可以创建跟踪器函数来跟踪对象了。我们只是为此创建了一个名为tracker.py的python文件。

复制代码
import math
class CustomTracker:    def __init__(self):        # Store the center positions of the objects        self.custom_center_points = {}        # Keep the count of the IDs        # each time a new object id detected, the count will increase by one        self.custom_id_count = 0
    def custom_update(self, custom_objects_rect):        # Objects boxes and ids        custom_objects_bbs_ids = []
        # Get center point of new object        for custom_rect in custom_objects_rect:            x, y, w, h = custom_rect            cx = (x + x + w) // 2            cy = (y + y + h) // 2
            # Find out if that object was detected already            same_object_detected = False            for custom_id, pt in self.custom_center_points.items():                dist = math.hypot(cx - pt[0], cy - pt[1])
                if dist < 35:                    self.custom_center_points[custom_id] = (cx, cy)                    custom_objects_bbs_ids.append([x, y, w, h, custom_id])                    same_object_detected = True                    break
            # New object is detected we assign the ID to that object            if same_object_detected is False:                self.custom_center_points[self.custom_id_count] = (cx, cy)                custom_objects_bbs_ids.append([x, y, w, h, self.custom_id_count])                self.custom_id_count += 1
        # Clean the dictionary by center points to remove IDS not used anymore        new_custom_center_points = {}        for custom_obj_bb_id in custom_objects_bbs_ids:            _, _, _, _, custom_object_id = custom_obj_bb_id            center = self.custom_center_points[custom_object_id]            new_custom_center_points[custom_object_id] = center
        # Update dictionary with IDs not used removed        self.custom_center_points = new_custom_center_points.copy()        return custom_objects_bbs_ids

**【3】编写车辆计数的主要代码。**​​​​​​​

复制代码
# Import the Librariesimport cv2import pandas as pdfrom ultralytics import YOLOfrom tracker import *

导入所有必要的库后,就可以导入模型了。我们不必从任何存储库下载模型。Ultralytics 做得非常出色,让我们可以更轻松地直接下载它们。

复制代码
model=YOLO('yolov9c.pt')

这会将 yolov9c.pt 模型下载到当前目录中。该模型已经在由 80 个不同类别组成的 COCO 数据集上进行了训练。现在让我们指定类:​​​​​​​

复制代码
class_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',              'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',              'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',              'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',              'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',              'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',              'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',              'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',              'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

现在,下一步是加载您要使用的视频。​​​​​​​

复制代码
tracker=CustomTracker()count=0
cap = cv2.VideoCapture('traffictrim.mp4')
# Get video propertiesfps = int(cap.get(cv2.CAP_PROP_FPS))width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object to save the modified framesoutput_video_path = 'output_video.mp4'fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # You can use other codecs like 'XVID' based on your systemout = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

在这里,我们在加载视频后获取视频属性,因为它们对于使用计数器重新创建视频并最终将其存储在本地非常有用。​​​​​​​

复制代码
# Looping over each frame and Performing the Detection
down = {}counter_down = set()while True:    ret, frame = cap.read()    if not ret:        break    count += 1
    results = model.predict(frame)
    a = results[0].boxes.data    a = a.detach().cpu().numpy()    px = pd.DataFrame(a).astype("float")    # print(px)
    list = []
    for index, row in px.iterrows():        #        print(row)        x1 = int(row[0])        y1 = int(row[1])        x2 = int(row[2])        y2 = int(row[3])        d = int(row[5])        c = class_list[d]        if 'car' in c:            list.append([x1, y1, x2, y2])
    bbox_id = tracker.custom_update(list)    # print(bbox_id)    for bbox in bbox_id:        x3, y3, x4, y4, id = bbox        cx = int(x3 + x4) // 2        cy = int(y3 + y4) // 2        # cv2.circle(frame,(cx,cy),4,(0,0,255),-1) #draw ceter points of bounding box        # cv2.rectangle(frame, (x3, y3), (x4, y4), (0, 255, 0), 2)  # Draw bounding box        # cv2.putText(frame,str(id),(cx,cy),cv2.FONT_HERSHEY_COMPLEX,0.8,(0,255,255),2)
        y = 308        offset = 7
        ''' condition for red line '''        if y < (cy + offset) and y > (cy - offset):            ''' this if condition is putting the id and the circle on the object when the center of the object touched the red line.'''
            down[id] = cy  # cy is current position. saving the ids of the cars which are touching the red line first.            # This will tell us the travelling direction of the car.            if id in down:                cv2.circle(frame, (cx, cy), 4, (0, 0, 255), -1)                #cv2.putText(frame, str(id), (cx, cy), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 255, 255), 2)                counter_down.add(id)
                # # line    text_color = (255, 255, 255)  # white color for text    red_color = (0, 0, 255)  # (B, G, R)
    # print(down)    cv2.line(frame, (282, 308), (1004, 308), red_color, 3)  # starting cordinates and end of line cordinates    cv2.putText(frame, ('red line'), (280, 308), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)

    downwards = (len(counter_down))    cv2.putText(frame, ('Vehicle Counter - ') + str(downwards), (60, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, red_color, 1,                cv2.LINE_AA)
    cv2.line(frame,(282,308),(1004,308),red_color,3)  #  starting cordinates and end of line cordinates    cv2.putText(frame,('red line'),(280,308),cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)        # This will write the Output Video to the location specified above    out.write(frame)

在上面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对车辆进行计数,因此仅过滤掉汽车的检测结果。

之后,我们找到检测到的车辆的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。

我们可以看到,当车辆越过红线时,视频左上角的计数器不断增加。

相关推荐
m0_7231402315 分钟前
Python训练营-Day49
开发语言·python
北风toto1 小时前
python学习DataFrame数据结构
数据结构·python·学习
亿牛云爬虫专家1 小时前
微服务化采集平台:可扩展性与容错机制
python·微服务·架构·爬虫代理·扩展性·新浪财经·财经新闻
傻啦嘿哟1 小时前
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
爬虫·python·tcp/ip
mit6.8241 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
zhangfeng11331 小时前
python 数据分析 单细胞测序数据分析 相关的图表,常见于肿瘤免疫微环境、细胞亚群功能研究 ,各图表类型及逻辑关系如下
开发语言·python·数据分析·医学
Baihai IDP1 小时前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·ai·系统架构·llm·agent·rag·白海科技
沫儿笙1 小时前
弧焊机器人气体全方位节能指南
网络·人工智能·机器人
LONGZETECH1 小时前
【龙泽科技】新能源汽车维护与动力蓄电池检测仿真教学软件【吉利几何G6】
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
柠檬豆腐脑1 小时前
Trae-Agent 内置工具深度解析
python·llm·agent