GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-构建多参数的自定义LangChain工具

LangChain系列

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-搭建LangChain流程简单应用

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-简单聊聊LangChain

大模型查询工具助手之股票免费查询接口

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像"人工智能"。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

python 复制代码
# 引入需要的模块
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool

from typing import Optional, Type

from langchain.callbacks.manager import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)

当需要定义多个参数的自定义tools,怎么构造呢?

用@Tool装饰器自定义

LangChain可以连接到自己定义的工具,也可以连接到内嵌的tool提供商。通过@Tool构造多参数。

例子自定义乘法器:

python 复制代码
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

查看相关的参数:

python 复制代码
print(multiply.name)
print(multiply.description)
print(multiply.args)

可以看到 两个int 参数:

multiply
multiply(a: int, b: int) -> int - Multiply two numbers.
{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}

用BaseTool构建多参数tool

除了tool装饰器,还有是BaseTool的方法,定义工具的参数说明。

仍然定义乘法器。

python 复制代码
# 定义参数说明
class CalculatorInput(BaseModel):
    a: int = Field(description="first number")
    b: int = Field(description="second number")

自定义多参数工具类,实现功能:

python 复制代码
class CustomCalculatorTool(BaseTool):
    name = "Calculator"
    description = "useful for when you need to answer questions about math"
    args_schema: Type[BaseModel] = CalculatorInput
    return_direct: bool = True

    def _run(
        self, a: int, b: int, run_manager: Optional[CallbackManagerForToolRun] = None
    ) -> str:
        """Use the tool."""
        return a * b

    async def _arun(
        self,
        a: int,
        b: int,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("Calculator does not support async")

实例化,查看参数情况:

python 复制代码
multiply = CustomCalculatorTool()
print(multiply.name)
print(multiply.description)
print(multiply.args)
print(multiply.return_direct)

得到类似的输出:

Calculator
useful for when you need to answer questions about math
{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}
True

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
haibo21446 小时前
GPT-Omni 与 Mini-Omni2:创新与性能的结合
gpt
hunteritself8 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
伯牙碎琴20 小时前
智能体实战(需求分析助手)二、需求分析助手第一版实现(支持需求提取、整理、痛点分析、需求分类、优先级分析、需求文档生成等功能)
ai·大模型·agent·需求分析·智能体
三月七(爱看动漫的程序员)2 天前
Knowledge Graph Prompting for Multi-Document Question Answering
人工智能·gpt·学习·语言模型·自然语言处理·机器人·知识图谱
三月七(爱看动漫的程序员)2 天前
LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS---正文
人工智能·gpt·学习·机器学习·语言模型·自然语言处理·llama
hunteritself2 天前
OpenAI直播发布第11天:ChatGPT桌面客户端升级,就这?
人工智能·gpt·chatgpt·语音识别·claude
ghostwritten2 天前
Linux 下的 GPT 和 MBR 分区表详解
linux·运维·gpt
旷野..2 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
爱学习的小道长3 天前
Python langchain ReAct 使用范例
python·ai·langchain
that's boy3 天前
ChatGPT Search开放:实时多模态搜索新体验
人工智能·gpt·chatgpt·openai·midjourney