Tensorflow2.笔记 - 单层感知机(单输出,多输出)Single Layer Perceptron

本笔记主要记录单层感知机的相关内容,包括单层单输出,和单层多输出。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#单层单输出感知机,逻辑回归很类似,主要区别就是激活函数和损失函数不同
#单层感知机的激活函数通常使用sign函数
#逻辑回归的激活函数通常使用sigmoid
#参考资料:https://blog.csdn.net/weixin_60737527/article/details/125455264
#下面的例子为简单的逻辑回归的示例
#x表示1个样本,样本数据维度是3
x = tf.random.normal([1,3])
#权值w默认设置为1,偏置b默认为1
w = tf.ones([3,1])
b = tf.ones([1])
#y表示真实标签
y = tf.constant([1])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    logits = tf.sigmoid(x@w+b)
    loss = tf.reduce_mean(tf.losses.MSE(y, logits))

#求解梯度
grads = tape.gradient(loss, [w, b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

#单层多输出感知机
#x表示2个样本,样本数据维度是4
x = tf.random.normal([2,4])
w = tf.random.normal([4,3])
b = tf.zeros([3])
#y表示真实的标签值
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    prob = tf.nn.softmax(x@w+b, axis=1)
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))

#求解梯度
grads = tape.gradient(loss, [w,b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

运行结果:

相关推荐
MidJourney中文版4 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上31 分钟前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案43 分钟前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
巴里巴气1 小时前
selenium基础知识 和 模拟登录selenium版本
爬虫·python·selenium·爬虫模拟登录
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
JavaEdge在掘金1 小时前
Redis 数据倾斜?别慌!从成因到解决方案,一文帮你搞定
python
ansurfen1 小时前
我的第一个AI项目:从零搭建RAG知识库的踩坑之旅
python·llm
前端付豪1 小时前
20、用 Python + API 打造终端天气预报工具(支持城市查询、天气图标、美化输出🧊
后端·python