LeetCode //C - 142. Linked List Cycle II

142. Linked List Cycle II

Given the head of a linked list, return the node where the cycle begins. If there is no cycle, return null.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to (0-indexed). It is -1 if there is no cycle. Note that pos is not passed as a parameter.

Do not modify the linked list.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.

Example 2:

Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.

Example 3:

Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.

Constraints:
  • he number of the nodes in the list is in the range [ 0 , 1 0 4 ] [0, 10^4] [0,104].
  • − 1 0 5 < = N o d e . v a l < = 1 0 5 -10^5 <= Node.val <= 10^5 −105<=Node.val<=105
  • pos is -1 or a valid index in the linked-list.

From: LeetCode

Link: 142. Linked List Cycle II


Solution:

Ideas:
  1. Initialization: Start with two pointers at the head of the linked list, slow and fast.

  2. Movement: Move slow by one node and fast by two nodes at each step. The slow pointer moves one step at a time (slow = slow->next;), while the fast pointer moves two steps at a time (fast = fast->next->next;).

  3. Cycle Detection: If there is a cycle, the fast pointer will eventually overlap with the slow pointer inside the cycle since the fast pointer is moving faster. If the fast pointer reaches NULL (i.e., fast == NULL || fast->next == NULL), that means the list has an end and, therefore, no cycle.

  4. Identifying Cycle Entry: Once a cycle is detected (i.e., slow == fast), move the slow pointer back to the head of the list and keep the fast pointer at the meeting point. Now move both pointers at the same pace, one step at a time (slow = slow->next; fast = fast->next;).

  5. Cycle Entry Point: The point where the slow and fast pointers meet again is the start of the cycle. This happens because the distance from the head of the list to the start of the cycle is the same as the distance from the meeting point to the start of the cycle following the cycle's path.

Code:
c 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode *slow = head;
    struct ListNode *fast = head;
    
    // First step: Determine whether there is a cycle in the list.
    while (fast != NULL && fast->next != NULL) {
        slow = slow->next;
        fast = fast->next->next;
        
        if (slow == fast) {
            // Cycle detected, now let's find the entry point.
            slow = head; // Move slow pointer to head.
            while (slow != fast) {
                slow = slow->next;
                fast = fast->next;
            }
            return slow; // slow is now the start of the cycle.
        }
    }
    return NULL; // No cycle found.
}
相关推荐
爱思德学术17 分钟前
中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):BIBM 2025
算法
冰糖猕猴桃27 分钟前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
lifallen41 分钟前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
liujing102329292 小时前
Day04_刷题niuke20250703
java·开发语言·算法
2401_881244402 小时前
Treap树
数据结构·算法
乌萨奇也要立志学C++2 小时前
二叉树OJ题(单值树、相同树、找子树、构建和遍历)
数据结构·算法
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
wsxqaz2 小时前
浏览器原生控件上传PDF导致hash值不同
算法·pdf·哈希算法
NAGNIP3 小时前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法
摘星编程3 小时前
多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
人工智能·算法·多模态ai·视觉语言融合·ai决策算法