LeetCode //C - 142. Linked List Cycle II

142. Linked List Cycle II

Given the head of a linked list, return the node where the cycle begins. If there is no cycle, return null.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to (0-indexed). It is -1 if there is no cycle. Note that pos is not passed as a parameter.

Do not modify the linked list.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.

Example 2:

Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.

Example 3:

Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.

Constraints:
  • he number of the nodes in the list is in the range [ 0 , 1 0 4 ] [0, 10^4] [0,104].
  • − 1 0 5 < = N o d e . v a l < = 1 0 5 -10^5 <= Node.val <= 10^5 −105<=Node.val<=105
  • pos is -1 or a valid index in the linked-list.

From: LeetCode

Link: 142. Linked List Cycle II


Solution:

Ideas:
  1. Initialization: Start with two pointers at the head of the linked list, slow and fast.

  2. Movement: Move slow by one node and fast by two nodes at each step. The slow pointer moves one step at a time (slow = slow->next;), while the fast pointer moves two steps at a time (fast = fast->next->next;).

  3. Cycle Detection: If there is a cycle, the fast pointer will eventually overlap with the slow pointer inside the cycle since the fast pointer is moving faster. If the fast pointer reaches NULL (i.e., fast == NULL || fast->next == NULL), that means the list has an end and, therefore, no cycle.

  4. Identifying Cycle Entry: Once a cycle is detected (i.e., slow == fast), move the slow pointer back to the head of the list and keep the fast pointer at the meeting point. Now move both pointers at the same pace, one step at a time (slow = slow->next; fast = fast->next;).

  5. Cycle Entry Point: The point where the slow and fast pointers meet again is the start of the cycle. This happens because the distance from the head of the list to the start of the cycle is the same as the distance from the meeting point to the start of the cycle following the cycle's path.

Code:
c 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode *slow = head;
    struct ListNode *fast = head;
    
    // First step: Determine whether there is a cycle in the list.
    while (fast != NULL && fast->next != NULL) {
        slow = slow->next;
        fast = fast->next->next;
        
        if (slow == fast) {
            // Cycle detected, now let's find the entry point.
            slow = head; // Move slow pointer to head.
            while (slow != fast) {
                slow = slow->next;
                fast = fast->next;
            }
            return slow; // slow is now the start of the cycle.
        }
    }
    return NULL; // No cycle found.
}
相关推荐
leiming65 小时前
C++ vector容器
开发语言·c++·算法
SystickInt6 小时前
C语言 strcpy和memcpy 异同/区别
c语言·开发语言
CS Beginner6 小时前
【C语言】windows下编译mingw版本的glew库
c语言·开发语言·windows
JAY_LIN——86 小时前
指针-数组
c语言·排序算法
Xの哲學6 小时前
Linux流量控制: 内核队列的深度剖析
linux·服务器·算法·架构·边缘计算
yaoh.wang7 小时前
力扣(LeetCode) 88: 合并两个有序数组 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
进阶的猪7 小时前
STM32 使用HAL库SPI读写FLASH(W25Q128JV)数据 Q&A
c语言·stm32·单片机
LYFlied8 小时前
【每日算法】 LeetCode 56. 合并区间
前端·算法·leetcode·面试·职场和发展
艾醒8 小时前
大模型原理剖析——多头潜在注意力 (MLA) 详解
算法
艾醒8 小时前
大模型原理剖析——DeepSeek-V3深度解析:671B参数MoE大模型的技术突破与实践
算法