Tensorflow2.0笔记 - 均方差MSE和交叉熵CROSS ENTROPHY作为损失函数

本笔记主要记录使用MSE和交叉熵作为loss function时的梯度计算方法。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#softmax函数使用
#参考资料:https://blog.csdn.net/u013230189/article/details/82835717
#简单例子:
#假设输出的LOGITS SCORE为:
#2.0
#1.0
#0.1
#使用softmax后,可以按照score得分高低来转换成概率大小,所有输出值相加为1:
#2.0     0.7
#1.0  -> 0.2
#0.1     0.1

#MSE均方差loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/35707643
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #使用softmax计算概率
    prob = tf.nn.softmax(x@w +b, axis=1)
    #使用MSE计算loss
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))
#求解损失函数的梯度
grads = tape.gradient(loss, [w,b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

#交叉熵loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/38241764
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #计算logits
    logits = x@w + b
    #使用交叉熵计算loss
    loss = tf.reduce_mean(tf.losses.categorical_crossentropy(tf.one_hot(y, depth=3), logits, from_logits=True))

#求解损失函数的梯度
grads = tape.gradient(loss, [w, b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

运行结果:

相关推荐
xwill*5 小时前
分词器(Tokenizer)-sentencepiece(把训练语料中的字符自动组合成一个最优的子词(subword)集合。)
开发语言·pytorch·python
学历真的很重要5 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友5 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何5 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何5 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
咖啡の猫5 小时前
Python列表的查询操作
开发语言·python
Chiandra_Leong5 小时前
Python-Pandas、Numpy
python·pandas
BoBoZz195 小时前
ParametricObjectsDemo多种参数曲面展示及面上部分点法线展示
python·vtk·图形渲染·图形处理
思成不止于此5 小时前
MySQL 查询实战(三):排序与综合练习
数据库·笔记·学习·mysql
苍何5 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能