Tensorflow2.0笔记 - 均方差MSE和交叉熵CROSS ENTROPHY作为损失函数

本笔记主要记录使用MSE和交叉熵作为loss function时的梯度计算方法。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#softmax函数使用
#参考资料:https://blog.csdn.net/u013230189/article/details/82835717
#简单例子:
#假设输出的LOGITS SCORE为:
#2.0
#1.0
#0.1
#使用softmax后,可以按照score得分高低来转换成概率大小,所有输出值相加为1:
#2.0     0.7
#1.0  -> 0.2
#0.1     0.1

#MSE均方差loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/35707643
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #使用softmax计算概率
    prob = tf.nn.softmax(x@w +b, axis=1)
    #使用MSE计算loss
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))
#求解损失函数的梯度
grads = tape.gradient(loss, [w,b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

#交叉熵loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/38241764
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #计算logits
    logits = x@w + b
    #使用交叉熵计算loss
    loss = tf.reduce_mean(tf.losses.categorical_crossentropy(tf.one_hot(y, depth=3), logits, from_logits=True))

#求解损失函数的梯度
grads = tape.gradient(loss, [w, b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

运行结果:

相关推荐
云卓SKYDROID3 分钟前
无人机中继器模式技术对比
人工智能·游戏引擎·php·无人机·cocos2d·高科技·云卓科技
董建光d9 分钟前
【深度学习】目标检测全解析:定义、数据集、评估指标与主流算法
深度学习·算法·目标检测
摇滚侠23 分钟前
Spring Boot 3零基础教程,Spring Boot 日志级别,笔记19
java·spring boot·笔记
星空的资源小屋27 分钟前
RoboIntern,一款自动化办公小助手
运维·人工智能·pdf·自动化·电脑·excel
星期天要睡觉28 分钟前
计算机视觉(opencv)——基于 MediaPipe 的实时面部表情识别
人工智能·深度学习·机器学习
烧冻鸡翅QAQ29 分钟前
考研数学笔记(概率统计篇)
笔记·考研
~~李木子~~32 分钟前
机器学习集成算法实践:装袋法与提升法对比分析
人工智能·算法·机器学习
wan了个蛋34 分钟前
使用python脚本大批量自动化处理图片上的ai水印
python
~黄夫人~44 分钟前
Ubuntu系统快速上手命令(详细)
linux·运维·笔记·ubuntu·postgresql