Tensorflow2.0笔记 - 均方差MSE和交叉熵CROSS ENTROPHY作为损失函数

本笔记主要记录使用MSE和交叉熵作为loss function时的梯度计算方法。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#softmax函数使用
#参考资料:https://blog.csdn.net/u013230189/article/details/82835717
#简单例子:
#假设输出的LOGITS SCORE为:
#2.0
#1.0
#0.1
#使用softmax后,可以按照score得分高低来转换成概率大小,所有输出值相加为1:
#2.0     0.7
#1.0  -> 0.2
#0.1     0.1

#MSE均方差loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/35707643
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #使用softmax计算概率
    prob = tf.nn.softmax(x@w +b, axis=1)
    #使用MSE计算loss
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))
#求解损失函数的梯度
grads = tape.gradient(loss, [w,b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

#交叉熵loss函数及其梯度计算
#参考资料:https://zhuanlan.zhihu.com/p/38241764
#下面例子中:x表示两个样本数据,每个数据是一个长度为4的tensor:[2,4]
x = tf.random.normal([2,4])
#输入数据的维度是4,输出节点我们定义为3维,表示3分类结果
w = tf.random.normal([4,3])
#bias初始化为0
b = tf.zeros([3])
#输出的label值,表示两个样本的真实label的class是2和0
y = tf.constant([2,0])

with tf.GradientTape() as tape:
    tape.watch([w,b])
    #计算logits
    logits = x@w + b
    #使用交叉熵计算loss
    loss = tf.reduce_mean(tf.losses.categorical_crossentropy(tf.one_hot(y, depth=3), logits, from_logits=True))

#求解损失函数的梯度
grads = tape.gradient(loss, [w, b])
print("Gradients of w:\n", grads[0].numpy())
print("Gradients of b:\n", grads[1].numpy())

运行结果:

相关推荐
惊讶的猫1 分钟前
LSTM论文解读
开发语言·python
潇冉沐晴27 分钟前
div2 1052 个人补题笔记
笔记
测试老哥38 分钟前
软件测试之单元测试知识总结
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
翔云 OCR API39 分钟前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
buvsvdp50059ac1 小时前
如何在VSCode中设置Python解释器?
ide·vscode·python
南方者1 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
njxiejing1 小时前
Python进度条工具tqdm的安装与使用
开发语言·python
蒙奇D索大1 小时前
【计算机网络】[特殊字符] 408高频考点 | 数据链路层组帧:从字符计数到违规编码,一文学透四大实现方法
网络·笔记·学习·计算机网络·考研
庄周迷蝴蝶1 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习