【学习】感受野

感受野(receptive field)是指在神经网络中,某一层输出的特征图上的一个像素点对应输入图像的区域大小。在深度神经网络中,随着网络层数的增加,特征图的感受野也会逐渐增大。这是因为每一层的卷积操作都会扩大感受野。

为什么卷积操作会扩大感受野

如上图所示,对于一个5x5的图像,第一次采用了3x3卷积,第二次也是3x3卷积,但是图中只是画出了第二次卷积中获得的一个点。

第二次卷积的一个点,他的感受野是第一次卷积的9个点,而第一次卷积对于的9个点,如图中红圈1和红圈2所示,该层9个点可以包含整个5x5图像。所以第二层卷积的感受野是5x5,而第一层是3x3。

假设我们有一个输入图像,大小为5x5。在第一层使用3x3的卷积核进行卷积操作时,卷积核会滑动在输入图像上,每次都对应一个3x3的区域,生成一个输出特征图。这个输出特征图的每个像素点,都受到了输入图像上相应的3x3区域内的信息影响。这样,第一层的每个输出像素点的感受野是3x3,因为它只能看到输入图像的一个3x3的局部区域。

现在,让我们来看第二层。假设我们再次使用一个3x3的卷积核对第一层的输出特征图进行卷积操作。这个3x3的卷积核会滑动在第一层的输出特征图上,每次也对应一个3x3的区域。但是这次不同的是,第一层的每个输出像素点都代表了输入图像上一个5x5的局部区域的信息。因此,第二层的每个输出像素点的感受野是5x5,因为它可以看到输入图像的一个5x5的局部区域。

换句话说,在第二层中,每个输出像素点都可以追溯到输入图像的更大区域,这是因为它们是由第一层输出的像素点通过卷积操作得到的。因此,第二层的感受野比第一层大,这种情况会随着网络层数的增加而继续发生,从而导致特征图的感受野逐渐增大。

相关推荐
Komorebi.py10 分钟前
【Linux】-学习笔记05
linux·笔记·学习
HPC_fac130520678162 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd5 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
朝九晚五ฺ8 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
猫爪笔记9 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
如若12310 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
pq113_610 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio
澄澈i10 小时前
设计模式学习[8]---原型模式
学习·设计模式·原型模式
老艾的AI世界10 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
爱米的前端小笔记11 小时前
前端八股自学笔记分享—页面布局(二)
前端·笔记·学习·面试·求职招聘