【学习】感受野

感受野(receptive field)是指在神经网络中,某一层输出的特征图上的一个像素点对应输入图像的区域大小。在深度神经网络中,随着网络层数的增加,特征图的感受野也会逐渐增大。这是因为每一层的卷积操作都会扩大感受野。

为什么卷积操作会扩大感受野

如上图所示,对于一个5x5的图像,第一次采用了3x3卷积,第二次也是3x3卷积,但是图中只是画出了第二次卷积中获得的一个点。

第二次卷积的一个点,他的感受野是第一次卷积的9个点,而第一次卷积对于的9个点,如图中红圈1和红圈2所示,该层9个点可以包含整个5x5图像。所以第二层卷积的感受野是5x5,而第一层是3x3。

假设我们有一个输入图像,大小为5x5。在第一层使用3x3的卷积核进行卷积操作时,卷积核会滑动在输入图像上,每次都对应一个3x3的区域,生成一个输出特征图。这个输出特征图的每个像素点,都受到了输入图像上相应的3x3区域内的信息影响。这样,第一层的每个输出像素点的感受野是3x3,因为它只能看到输入图像的一个3x3的局部区域。

现在,让我们来看第二层。假设我们再次使用一个3x3的卷积核对第一层的输出特征图进行卷积操作。这个3x3的卷积核会滑动在第一层的输出特征图上,每次也对应一个3x3的区域。但是这次不同的是,第一层的每个输出像素点都代表了输入图像上一个5x5的局部区域的信息。因此,第二层的每个输出像素点的感受野是5x5,因为它可以看到输入图像的一个5x5的局部区域。

换句话说,在第二层中,每个输出像素点都可以追溯到输入图像的更大区域,这是因为它们是由第一层输出的像素点通过卷积操作得到的。因此,第二层的感受野比第一层大,这种情况会随着网络层数的增加而继续发生,从而导致特征图的感受野逐渐增大。

相关推荐
xiaobai1781 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
北岛寒沫1 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
扑火的小飞蛾2 小时前
网络安全小白学习路线图 (基于提供文档库)
学习·安全·web安全
优雅的潮叭2 小时前
c++ 学习笔记之 malloc
c++·笔记·学习
小途软件2 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai
薛不痒3 小时前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
昵称已被吞噬~‘(*@﹏@*)’~4 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
我想我不够好。4 小时前
学到的知识点 1.8
学习
格林威5 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机