论文阅读FCN-Transformer Feature Fusion for PolypSegmentation

本文提出了一种名为Fully Convolutional Branch-TransFormer (FCBFormer)的图像分割框架。该架构旨在结合Transformer和全卷积网络(FCN)的优势,以提高结肠镜图像中息肉的检测和分类准确性。

1,框架结构:

模型采用双分支结构,两个并行分支:一个全卷积分支(FCB)和一个Transformer分支(TB)。FCB返回全尺寸(h×w)特征图,而TB返回降尺寸(h/4 × w/4)的特征图。TB的输出张量经过上采样并与FCB的输出张量在通道维度上进行拼接,然后通过预测头(PH)处理,生成输入图像的全尺寸分割图。

2,TB分支的结构

TB使用ImageNet预训练的金字塔视觉Transformer V2(PVTv2)作为图像编码器,该编码器返回一个具有4个级别的特征金字塔,这个金字塔随后被用作渐进式局部解码器(PLD)的输入。

在PLD中,金字塔的每个级别首先通过一个局部强调(LE)模块进行处理,以解决基于Transformer的模型在特征表示中表示局部特征的不足,然后通过逐步特征聚合(SFA)融合经过局部强调的金字塔特征。最后,融合的多尺度特征用于预测输入图像的分割图。

3,LE模块的结构

LE模块,即局部强调(Local Emphasis)模块,是SSFormer架构中用于增强Transformer编码器提取的特征的局部特征表示的组件。在FCBFormer的TB(Transformer Branch)中,LE模块的目的是通过强调图像的局部区域来改善Transformer模型在处理细节时的性能。

LE模块的具体由卷积层、激活函数、残差连接、组归一化、通道数调整等部分组成。

LE模块的设计旨在通过突出局部特征来弥补Transformer在处理精细细节时的不足,从而在分割任务中提供更准确的局部边界信息。

4,FCB分支的结构

如上图C所示,是由残差模块组成的U型结构。

5,实验结果

相关推荐
开心星人12 分钟前
【论文阅读】UNIT: Backdoor Mitigation via Automated Neural Distribution Tightening
论文阅读
regret~35 分钟前
【论文笔记】ViT-CoMer
论文阅读
勤劳的进取家1 小时前
论文阅读:Self-Collaboration Code Generation via ChatGPT
论文阅读·chatgpt
后知后觉1 小时前
深度学习-最简单的Demo-直接运行
人工智能·深度学习
COOCC11 小时前
激活函数全解析:定义、分类与 17 种常用函数详解
人工智能·深度学习·神经网络·算法·机器学习·计算机视觉·自然语言处理
charles_vaez2 小时前
开源模型应用落地-模型上下文协议(MCP)-Resources-资源的使用逻辑
深度学习·语言模型·自然语言处理·开源
ayiya_Oese3 小时前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习
-一杯为品-3 小时前
【深度学习】#11 优化算法
人工智能·深度学习·算法
攻城狮7号5 小时前
一文解析13大神经网络算法模型架构
人工智能·深度学习·神经网络·机器学习
羽凌寒5 小时前
动态范围调整(SEF算法实现)
人工智能·深度学习·计算机视觉