论文阅读FCN-Transformer Feature Fusion for PolypSegmentation

本文提出了一种名为Fully Convolutional Branch-TransFormer (FCBFormer)的图像分割框架。该架构旨在结合Transformer和全卷积网络(FCN)的优势,以提高结肠镜图像中息肉的检测和分类准确性。

1,框架结构:

模型采用双分支结构,两个并行分支:一个全卷积分支(FCB)和一个Transformer分支(TB)。FCB返回全尺寸(h×w)特征图,而TB返回降尺寸(h/4 × w/4)的特征图。TB的输出张量经过上采样并与FCB的输出张量在通道维度上进行拼接,然后通过预测头(PH)处理,生成输入图像的全尺寸分割图。

2,TB分支的结构

TB使用ImageNet预训练的金字塔视觉Transformer V2(PVTv2)作为图像编码器,该编码器返回一个具有4个级别的特征金字塔,这个金字塔随后被用作渐进式局部解码器(PLD)的输入。

在PLD中,金字塔的每个级别首先通过一个局部强调(LE)模块进行处理,以解决基于Transformer的模型在特征表示中表示局部特征的不足,然后通过逐步特征聚合(SFA)融合经过局部强调的金字塔特征。最后,融合的多尺度特征用于预测输入图像的分割图。

3,LE模块的结构

LE模块,即局部强调(Local Emphasis)模块,是SSFormer架构中用于增强Transformer编码器提取的特征的局部特征表示的组件。在FCBFormer的TB(Transformer Branch)中,LE模块的目的是通过强调图像的局部区域来改善Transformer模型在处理细节时的性能。

LE模块的具体由卷积层、激活函数、残差连接、组归一化、通道数调整等部分组成。

LE模块的设计旨在通过突出局部特征来弥补Transformer在处理精细细节时的不足,从而在分割任务中提供更准确的局部边界信息。

4,FCB分支的结构

如上图C所示,是由残差模块组成的U型结构。

5,实验结果

相关推荐
Felaim14 分钟前
Sparse4D 时序输入和 Feature Queue 详解
人工智能·深度学习·自动驾驶
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-IGA(Identity Governance & Administration,身份治理与管理)平台
人工智能·深度学习·算法·职场和发展
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-app 管理平台
人工智能·深度学习·算法·职场和发展
硅谷秋水1 小时前
LLM的测试-时规模化:基于子问题结构视角的综述
人工智能·深度学习·机器学习·语言模型
Boxsc_midnight2 小时前
【规范驱动的开发方式】之【spec-kit】 的安装入门指南
人工智能·python·深度学习·软件工程·设计规范
阿正的梦工坊3 小时前
RLVE:通过自适应可验证环境扩展语言模型的强化学习
人工智能·深度学习·语言模型
nwsuaf_huasir3 小时前
深度学习2-pyTorch学习-张量基本操作
pytorch·深度学习·学习
猫天意3 小时前
【即插即用模块】AAAI2026 | MHCB+DPA:特征提取+双池化注意力,涨点必备,SCI保二争一!彻底疯狂!!!
网络·人工智能·深度学习·算法·yolo
BB_CC_DD3 小时前
CVAT平台安装和半自动标注搭建
深度学习
相思半3 小时前
机器学习模型实战全解析
大数据·人工智能·笔记·python·机器学习·数据挖掘·transformer