论文阅读FCN-Transformer Feature Fusion for PolypSegmentation

本文提出了一种名为Fully Convolutional Branch-TransFormer (FCBFormer)的图像分割框架。该架构旨在结合Transformer和全卷积网络(FCN)的优势,以提高结肠镜图像中息肉的检测和分类准确性。

1,框架结构:

模型采用双分支结构,两个并行分支:一个全卷积分支(FCB)和一个Transformer分支(TB)。FCB返回全尺寸(h×w)特征图,而TB返回降尺寸(h/4 × w/4)的特征图。TB的输出张量经过上采样并与FCB的输出张量在通道维度上进行拼接,然后通过预测头(PH)处理,生成输入图像的全尺寸分割图。

2,TB分支的结构

TB使用ImageNet预训练的金字塔视觉Transformer V2(PVTv2)作为图像编码器,该编码器返回一个具有4个级别的特征金字塔,这个金字塔随后被用作渐进式局部解码器(PLD)的输入。

在PLD中,金字塔的每个级别首先通过一个局部强调(LE)模块进行处理,以解决基于Transformer的模型在特征表示中表示局部特征的不足,然后通过逐步特征聚合(SFA)融合经过局部强调的金字塔特征。最后,融合的多尺度特征用于预测输入图像的分割图。

3,LE模块的结构

LE模块,即局部强调(Local Emphasis)模块,是SSFormer架构中用于增强Transformer编码器提取的特征的局部特征表示的组件。在FCBFormer的TB(Transformer Branch)中,LE模块的目的是通过强调图像的局部区域来改善Transformer模型在处理细节时的性能。

LE模块的具体由卷积层、激活函数、残差连接、组归一化、通道数调整等部分组成。

LE模块的设计旨在通过突出局部特征来弥补Transformer在处理精细细节时的不足,从而在分割任务中提供更准确的局部边界信息。

4,FCB分支的结构

如上图C所示,是由残差模块组成的U型结构。

5,实验结果

相关推荐
赵钰老师34 分钟前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
Start_Present2 小时前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
Y1nhl4 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
Y1nhl5 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法7 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!8 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang0511 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
鸿蒙布道师12 小时前
OpenAI战略转向:开源推理模型背后的行业博弈与技术趋势
人工智能·深度学习·神经网络·opencv·自然语言处理·openai·deepseek
小白的高手之路13 小时前
torch.nn.Conv2d介绍——Pytorch中的二维卷积层
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
船长@Quant13 小时前
PyTorch量化进阶教程:第五章 Transformer 在量化交易中的应用
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lab