数据结构之链式二叉树

当我们初步了解二叉树后

我们就可以进一步去深入学习二叉树了

1.链式二叉树的遍历

这里我们先去定义链式二叉树的结构

分为两个指针

一左一右

他们分别指向左子树和右子树

cpp 复制代码
typedef int BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinartTreeNode* left;
	struct BinartTreeNode* right;
}TreeNode;

左右子树的节点又可以细分为:根,左子树,右子树

图中的1节点就是根,2和3则是左子树,456则是右子树

1.1二叉树的前序,中序,后序遍历

前序遍历、中序遍历和后序遍历。这些遍历方式指的是节点访问的顺序。

**前序遍历:**在前序遍历中,我们首先访问根节点,然后递归地进行左子树的前序遍历,接着递归地进行右子树的前序遍历。

**中序遍历:**中序遍历中,我们首先递归地进行左子树的中序遍历,然后访问根节点,最后递归地进行右子树的中序遍历。

**后序遍历:**后序遍历中,我们首先递归地进行左子树的后序遍历,然后递归地进行右子树的后序遍历,最后访问根节点。

而这里呢我们又遇到了老朋友递归

问题不大

我们利用一棵树为例子

图中的这一棵树

以一为根

接下来我们先进行前序遍历

1.1.1前序遍历

前序遍历中先根后左右

●所以我们先去访问根1

●访问完根1后就访问左节点2

●接下来以2为根访问2的左节点3

●然后以3为根访问3的左节点,这是他的左节点为空,所以我们返回也就是开始进行递归

●递归到一后,开始进行访问1的右节点4

●访问到四就以4为根访问4的左节点5

●访问5后发现没有左节点就递归到4访问4的右节点

●访问6时没有左节点右节点就开始递归到4再到1

●最后访问结束

这里呢,我们用N代表空

那么访问完打印后应该是这样的

cpp 复制代码
1 2 3 N N N 4 5 N N 6 N N

1.1.2中序遍历

讨论完前序遍历我们进行中序遍历

中序遍历讲的是先左后根最后右

还是利用这棵树

遍历顺序:

●先是访问左子树,1的左子树是2,2的则是3,3没有了左子树也就是空,返回3,然后在访问3的右子树,空,返回到2

这是返回的应该是

cpp 复制代码
N 3 N

●回到2后访问2的左子树空,所以返回到1

cpp 复制代码
N 3 N 2 N

●回到一就访问1的右子树4,然后到4的左子树5,在访问5的左子树空,这时返回到5

cpp 复制代码
N 3 N 2 N 1 N 5 N

这时会有疑问,为什么没有四,不是先访问到4吗?

这里没有4的原因是,返回到1后应该访问它的右子树,而右子树中还有一个左子树5,所以应该先访问5,这里的5优先访问

●然后返回到4,访问4的右子树6,这里优先访问6的左子树,为空,返回到6,访问右子树,为空

cpp 复制代码
N 3 N 2 N 1 N 5 N 4 N 6 N

1.1.3后序遍历

后序遍历则是先左后右最后根

遍历顺序:

还是以这棵树为例

●先访问1的左子树,到3时,他的左子树为空,右子树为空

cpp 复制代码
N N 3

●返回到2后,右子树为空,访问根2,返回1

cpp 复制代码
N N 3 N 2

●回到一后,访问一的右子树,同时优先访问右子树中的左子树也就是节点五,访问五的左子树,然后是右子树,然后是五

cpp 复制代码
 N N 3 N 2 N N 5

●J返回到五后访问4的右子树6,然后访问6的左子树和右子树

cpp 复制代码
N N 3 N 2 N N 5 N N 6

●访问完6后就返回访问4,然后访问1

cpp 复制代码
N N 3 N 2 N N 5 N N 6 4 1

2.遍历代码的实现

2.1.树的实现

首先我们需要手搓一棵树

定义出来树的结构

并需要创建新的空间,所以这里包装一个函数

cpp 复制代码
typedef struct BinTreeNode
{
	struct BinTreeNode* left;
	struct BinTreeNode* right;
	int val;
}BTNode;
BTNode* BuyBTNode(int val)
{
	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return NULL;
	}
	newnode->val = val;
	newnode->left = NULL;
	newnode->right = NULL;
	return newnode;
}
// 手搓一棵树
BTNode* CreateTree()
{
	BTNode* n1 = BuyBTNode(1);
	BTNode* n2 = BuyBTNode(2);
	BTNode* n3 = BuyBTNode(3);
	BTNode* n4 = BuyBTNode(4);
	BTNode* n5 = BuyBTNode(5);
	BTNode* n6 = BuyBTNode(6);

	n1->left = n2;
	n1->right = n4;
	n2->left = n3;
	n4->left = n5;
	n4->right = n6;

	return n1;
}

这样就形成了图形中的树

2.2前序遍历代码

前序遍历的话我们需要用到递归

首如果检测到节点为空,这样的话就打印N并返回

如果没有

那么递归继续往下

因为是前序遍历

所以先递归左然后再递归右

cpp 复制代码
void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	printf("%d ", root->val);
	PreOrder(root->left);
	PreOrder(root->right);
}

2.3中序遍历代码

中序遍历和前序遍历的不同是前序遍历先根后左右,中序遍历则是先左后根最后右

所以,我们还是先遇到空返回N

没有则是返回左,打印根ra

cpp 复制代码
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

2.4后序遍历代码

后序遍历代码则是先左右最后根

所以

cpp 复制代码
void PostOrder(BTNode* root)
{
	if (root = NULL)
	{
		printf("N");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

2.5测试的结果

3.获取节点个数

获取节点个数,正常情况下我们的思路是定义一个size

然后在遍历的时候进行++size

代码如下

cpp 复制代码
int TreeSize(BTNode* root)
{
	static int size = 0;
	if (root == NULL)
		return 0;
	else
		++size;

	TreeSize(root->left);
	TreeSize(root->right);
	return size;
}

但这样会有一个缺点

我们没法去在这个函数里面重置我们的size

所以我们需要再主函数中

每调用完TreeSize函数,就需要重置一遍size

所以我们还有另外一个思路

直接去返回它的左节点和右节点,最后加一

利用递归的思想

代码如下

cpp 复制代码
int TreeSize(BTNode* root)
{
	return root == NULL ? 0 :
		TreeSize(root->left) + TreeSize(root->right) + 1;
}

这样就非常巧妙的完成了节点的个数

1.获取叶节点个数

获取叶子结点个数,我们这里也用递归的方法

利用分治思想去解决这个问题

●代码思想:

  1. 当遇到空树或者遇到空的节点时,也就是说这是的叶子为NULL,这是我们返回0

  2. 当遇到左节点或者右节点为空,当节点不为空时,此时已经到达了叶子结点,所以返回1

  3. 当遇到的不是叶节点时,我们需要到递归左节点的个数和右节点的个数,并进行递归返回

●代码思想:

对于整棵树来说,当我们遇到空树或者遇到节点为空的时候,这时的叶子结点为空,我们这时返回0,当不是上中情况的时候,我们从根往下去搜索,先搜索左节点,当左节点不为空,并且左节点的左子树和右子树都是空的时候,这时候就可以确定它是叶子了,也就是返回1,当搜索完左子树就可以搜索右子树,右子树也同理

4.获取树的高度

获取树的高度,我们也是利用分治的思想去实现这个代码

首先就是当我们要想返回高度的时候,我们需要调用到左右子树的高度

然后比较左右子树的高度,比较出最大的一个并返回

然后加1(因为我们递归的是左右子树的高度,我们需要整个树的高度,所以还需要加上根,也就是加一)

●代码思想:

1.当我们遇到空树或者遇到的节点为NULL,这时返回0

2.然后接下来去递归左子树和右子树

3.返回时,如果左子树大于右子树,那么就是左子树高度+1,否则右子树高度+1

cpp 复制代码
//获取树的高度
int TreeHeight(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	TreeHeight(root->left);
	TreeHeight(root->right);

	return (TreeHeight(root->left) > TreeHeight(root->right) ? TreeHeight(root->left) : TreeHeight(root->right)) + 1;
}

但这个代码有一定的缺陷

我们可以看到,这个代码我们调用了两次TreeHeight(root->left)和TreeHeight(root->right)

在这一树中,我们调用多次函数,大大增加了计算的难度,在一棵小树中可能不明显,可当树更大时,这时候弊端就先显示出来了

所以我们可以改进一下代码,定义两个变量去接受返回值

然后比较两个返回值

cpp 复制代码
//改进代码
int TreeHeight(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	/*TreeHeight(root->left);
	TreeHeight(root->right);

	return (TreeHeight(root->left) > TreeHeight(root->right) ? TreeHeight(root->left) : TreeHeight(root->right)) + 1;*/
	int Heightleft = TreeHeight(root->left);
	int Heightright = TreeHeight(root->right);

	return (Heightleft > Heightright ? Heightleft : Heightright + 1);
}

5.计算第K层节点个数

计算k层节点的个数,我们可以看成计算左节点的(k-1)层和右节点(k-1)层的节点个数

因为我们不算顶部节点所以应该是k-1

●代码思想:

首先是如果是空树或者当遇到叶子结点外的空节点时,返回0

当遇到k为1的时候,这时只有一个根,也就返回1

其余情况均利用递归思想,去递归左右子树,注意此时的k应该变成k-1

cpp 复制代码
//计算树k层的节点个数
int TreeKCount(BTNode* root, int k)
{
	if (root == NULL || k < 1)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return TreeKCount(root->left, k - 1) + TreeKCount(root->right, k - 1);
}

6.寻找某个节点

寻找某个节点的话,我们也利用递归的方法,分治的思想去解决这个问题

寻找某个节点,那么这个节点如果不在根上,那么就在根的左子树和右子树上

那么就想下寻找

下边的节点也可以分为左子树和右子树和根

依次进行,就形成了递归

cpp 复制代码
//寻找某个节点
BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
	{
		return 0;
	}
	if (x == root->val)
	{
		return root;
	}
	TreeFind(root->left, x);
	TreeFind(root->right, x);
    return NULL;
}

很多人可能会想到这样的代码

可当我们去运行的时候,我们会发现找不到,不管x为多少都找不到

为什么呢?

原因是我们没有东西去接收

当我们找到的时候,我们递归需要往上递归

可上边的栈中没有可以接受的变量值

所以我们最终遍历完整棵树也找不到我们想找的节点

所以改一下代码

cpp 复制代码
//寻找某个节点
BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
	{
		return 0;
	}
	if (x == root->val)
	{
		return root;
	}
	BTNode* ret1 = TreeFind(root->left, x);
	BTNode* ret2 = TreeFind(root->right, x);
	if (ret1)
		return ret1;
	if (ret2)
		return ret2;
	return NULL;
}

这样我们利用新建立的节点去接受我们的左右子树的数据

然后如果不为空就不断返回,为空那么就返回0

相关推荐
Amd7941 小时前
深入探讨索引的创建与删除:提升数据库查询效率的关键技术
数据结构·sql·数据库管理·索引·性能提升·查询优化·数据检索
OKkankan6 小时前
实现二叉树_堆
c语言·数据结构·c++·算法
指尖下的技术7 小时前
Mysql面试题----为什么B+树比B树更适合实现数据库索引
数据结构·数据库·b树·mysql
Bunury10 小时前
组件封装-List
javascript·数据结构·list
Joeysoda10 小时前
Java数据结构 (从0构建链表(LinkedList))
java·linux·开发语言·数据结构·windows·链表·1024程序员节
比特在路上10 小时前
ListOJ14:环形链表II(寻找环的入口点)
数据结构·链表
涅槃寂雨14 小时前
C语言小任务——寻找水仙花数
c语言·数据结构·算法
『往事』&白驹过隙;14 小时前
操作系统(Linux Kernel 0.11&Linux Kernel 0.12)解读整理——内核初始化(main & init)之缓冲区的管理
linux·c语言·数据结构·物联网·操作系统
就爱学编程14 小时前
从C语言看数据结构和算法:复杂度决定性能
c语言·数据结构·算法
半桔14 小时前
栈和队列(C语言)
c语言·开发语言·数据结构·c++·git