信号处理--基于gumbel-softmax方法实现运动想象分类的通道选择

目录

背景

亮点

环境配置

数据

方法

结果

代码获取

参考文献


背景

基于Gumbel-softmax方法EEG通道选择层的PyTorch实现。该层可以放置在任何深度神经网络架构的前面,以共同学习给定任务和网络权重的脑电图通道的最佳子集。这一层由选择神经元组成,每个神经元都使用输入通道上离散分布的连续松弛来学习最佳的单热权重向量来选择输入通道,而不是线性组合它们。

亮点

使用Gumbel-softmax方法对多通道脑电数据进行单通道选择(非多通道线性加权)

使用多尺度滤波卷积网络实现运动想象4分类。

环境配置

PyTorch 0.3.1,

CUDA 9.1

数据

High-Gamma Dataset

方法

多尺度滤波卷积网络主要代码:

python 复制代码
class MSFBCNN(nn.Module):
	def __init__(self,input_dim,output_dim,FT=10):
		super(MSFBCNN, self).__init__()
		self.T = input_dim[1]
		self.FT = FT
		self.D = 1
		self.FS = self.FT*self.D
		self.C=input_dim[0]
		self.output_dim = output_dim
		
		# Parallel temporal convolutions
		self.conv1a = nn.Conv2d(1, self.FT, (1, 65), padding = (0,32),bias=False)
		self.conv1b = nn.Conv2d(1, self.FT, (1, 41), padding = (0,20),bias=False)
		self.conv1c = nn.Conv2d(1, self.FT, (1, 27), padding = (0,13),bias=False)
		self.conv1d = nn.Conv2d(1, self.FT, (1, 17), padding = (0,8),bias=False)

		self.batchnorm1 = nn.BatchNorm2d(4*self.FT, False)
		
		# Spatial convolution
		self.conv2 = nn.Conv2d(4*self.FT, self.FS, (self.C,1),padding=(0,0),groups=1,bias=False)
		self.batchnorm2 = nn.BatchNorm2d(self.FS, False)

		#Temporal average pooling
		self.pooling2 = nn.AvgPool2d(kernel_size=(1, 75),stride=(1,15),padding=(0,0))

		self.drop=nn.Dropout(0.5)

		#Classification
		self.fc1 = nn.Linear(self.FS*math.ceil(1+(self.T-75)/15), self.output_dim)

	def forward(self, x):

		# Layer 1
		x1 = self.conv1a(x);
		x2 = self.conv1b(x);
		x3 = self.conv1c(x);
		x4 = self.conv1d(x);

		x = torch.cat([x1,x2,x3,x4],dim=1)
		x = self.batchnorm1(x)

		# Layer 2
		x = torch.pow(self.batchnorm2(self.conv2(x)),2)
		x = self.pooling2(x)
		x = torch.log(x)
		x = self.drop(x)
		
		# FC Layer
		x = x.view(-1, self.num_flat_features(x))
		x = self.fc1(x)
		return x

	def num_flat_features(self, x):
		size = x.size()[1:]  # all dimensions except the batch dimension
		num_features = 1
		for s in size:
			num_features *= s
		return num_features

Gumbel-softmax 再参数化主要代码:

python 复制代码
class SelectionLayer(nn.Module):
	def __init__(self, N,M,temperature=1.0):

		super(SelectionLayer, self).__init__()
		self.floatTensor = torch.FloatTensor if not torch.cuda.is_available() else torch.cuda.FloatTensor
		self.N = N
		self.M = M
		self.qz_loga = Parameter(torch.randn(N,M)/100)

		self.temperature=self.floatTensor([temperature])
		self.freeze=False
		self.thresh=3.0

	def quantile_concrete(self, x):

		g = -torch.log(-torch.log(x))
		y = (self.qz_loga+g)/self.temperature
		y = torch.softmax(y,dim=1)

		return y

	def regularization(self):
		
		eps = 1e-10
		z = torch.clamp(torch.softmax(self.qz_loga,dim=0),eps,1)
		H = torch.sum(F.relu(torch.norm(z,1,dim=1)-self.thresh))

		return H

	def get_eps(self, size):

		eps = self.floatTensor(size).uniform_(epsilon, 1-epsilon)

		return eps

	def sample_z(self, batch_size, training):

		if training:

			eps = self.get_eps(self.floatTensor(batch_size, self.N, self.M))
			z = self.quantile_concrete(eps)
			z=z.view(z.size(0),1,z.size(1),z.size(2))
	 
			return z

		else:

			ind = torch.argmax(self.qz_loga,dim=0)
			one_hot = self.floatTensor(np.zeros((self.N,self.M)))
			for j in range(self.M):
					one_hot[ind[j],j]=1
			one_hot=one_hot.view(1,1,one_hot.size(0),one_hot.size(1))
			one_hot = one_hot.expand(batch_size,1,one_hot.size(2),one_hot.size(3))

			return one_hot

	def forward(self, x):

		z = self.sample_z(x.size(0),training=(self.training and not self.freeze))
		z_t = torch.transpose(z,2,3)
		out = torch.matmul(z_t,x)
		return out

结果

实现从64通道脑电信号中提取出N个重要通道脑电信号,增强后续分类任务的性能

代码获取

https://download.csdn.net/download/YINTENAXIONGNAIER/88946872

参考文献

  • Strypsteen, Thomas, and Alexander Bertrand. "End-to-end learnable EEG channel selection for deep neural networks with Gumbel-softmax." Journal of Neural Engineering 18.4 (2021): 0460a9.
相关推荐
速融云1 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
AI明说1 小时前
什么是稀疏 MoE?Doubao-1.5-pro 如何以少胜多?
人工智能·大模型·moe·豆包
XianxinMao2 小时前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上3 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy3 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar3 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
大乔乔布斯3 小时前
数据挖掘常用算法模型简介
决策树·数据挖掘·线性回归
watersink3 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave4 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理