OpenCV 图像的几何变换

一、图像缩放

1.API

复制代码
cv2.resize(src, dsize, fx=0,fy=0,interpolation = cv2.INTER_LINEAR)

参数:

src:输入图像

dsize:绝对尺寸

fx,fy:相对尺寸

interpolation:插值方法

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
res_1 = cv.resize(img, (2*cols, 2*rows), interpolation=cv.INTER_CUBIC)
cv.imshow('image', res_1)
cv.waitKey()
res_2 = cv.resize(img, None, fx=0.5, fy=0.5)
cv.imshow('image', res_1)
cv.waitKey()

二、图像平移

1.API

python 复制代码
cv2.warpAffine(img, M, dsize)

参数:

img:输入图像

M:2×3移动矩阵,为np.float32类型

dsize:输出图像的大小

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = np.float32([[1, 0, 100], [0, 1, 50]])
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

三、图像旋转

1.API

python 复制代码
cv2.getRotationMatrix2D(center, angle, scale)
cv.warpAffine()

参数:

center:旋转中心

angle:旋转角度

scale:缩放比例

返回值:

M:旋转矩阵

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = cv.getRotationMatrix2D((cols/2, rows/2), 120, 1)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

四、仿射变换

1.API

python 复制代码
cv2.getAffineTransform()
cv2.warpAffine()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[100, 100], [200, 50], [100, 250]])
M = cv.getAffineTransform(pts1, pts2)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

五、透射变换

1.API

python 复制代码
cv2.getPerspectiveTransform()
cv2.warpPerspective()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.resize(img, None, fx=0.5, fy=0.5)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[56, 65], [368, 52], [28, 138], [389, 390]])
pts2 = np.float32([[100, 145], [300, 100], [80, 290], [310, 300]])
T = cv.getPerspectiveTransform(pts1, pts2)
dst = cv.warpPerspective(img, T, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

六、图像金字塔

1.API

python 复制代码
cv2.pyrUp(img) #对图像进行上采样
cv2.pyrDown(img) #对图像进行下采样

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
cv.imshow('image', img)
cv.waitKey()
相关推荐
LLM大模型几秒前
DeepSeek篇-Deepseek-R1+Dify打造本地RAG知识库
人工智能·llm·deepseek
北京地铁1号线1 分钟前
Zero-Shot(零样本学习),One-Shot(单样本学习),Few-Shot(少样本学习)概述
人工智能·算法·大模型
杀生丸学AI6 分钟前
【三维生成】FlashDreamer:基于扩散模型的单目图像到3D场景
人工智能·3d·大模型·aigc·蒸馏与迁移学习·扩散模型与生成模型
柠檬味拥抱6 分钟前
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
人工智能
Baihai_IDP20 分钟前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·llm·aigc
12点一刻21 分钟前
搭建自动化工作流:探寻解放双手的有效方案(1)
运维·人工智能·自动化·deepseek
GoGeekBaird28 分钟前
使用GoHumanLoop拓展AI Agent人机协同边界,这次连接到飞书
人工智能·后端·github
liliangcsdn43 分钟前
在mac m1基于llama.cpp运行deepseek
人工智能·macos·语言模型·llama
Deng9452013141 小时前
基于数据挖掘的课程推荐系统研究
人工智能·数据挖掘·数据预处理·基于用户的协同过滤·文本特征提取