OpenCV 图像的几何变换

一、图像缩放

1.API

复制代码
cv2.resize(src, dsize, fx=0,fy=0,interpolation = cv2.INTER_LINEAR)

参数:

src:输入图像

dsize:绝对尺寸

fx,fy:相对尺寸

interpolation:插值方法

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
res_1 = cv.resize(img, (2*cols, 2*rows), interpolation=cv.INTER_CUBIC)
cv.imshow('image', res_1)
cv.waitKey()
res_2 = cv.resize(img, None, fx=0.5, fy=0.5)
cv.imshow('image', res_1)
cv.waitKey()

二、图像平移

1.API

python 复制代码
cv2.warpAffine(img, M, dsize)

参数:

img:输入图像

M:2×3移动矩阵,为np.float32类型

dsize:输出图像的大小

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = np.float32([[1, 0, 100], [0, 1, 50]])
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

三、图像旋转

1.API

python 复制代码
cv2.getRotationMatrix2D(center, angle, scale)
cv.warpAffine()

参数:

center:旋转中心

angle:旋转角度

scale:缩放比例

返回值:

M:旋转矩阵

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = cv.getRotationMatrix2D((cols/2, rows/2), 120, 1)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

四、仿射变换

1.API

python 复制代码
cv2.getAffineTransform()
cv2.warpAffine()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[100, 100], [200, 50], [100, 250]])
M = cv.getAffineTransform(pts1, pts2)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

五、透射变换

1.API

python 复制代码
cv2.getPerspectiveTransform()
cv2.warpPerspective()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.resize(img, None, fx=0.5, fy=0.5)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[56, 65], [368, 52], [28, 138], [389, 390]])
pts2 = np.float32([[100, 145], [300, 100], [80, 290], [310, 300]])
T = cv.getPerspectiveTransform(pts1, pts2)
dst = cv.warpPerspective(img, T, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

六、图像金字塔

1.API

python 复制代码
cv2.pyrUp(img) #对图像进行上采样
cv2.pyrDown(img) #对图像进行下采样

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
cv.imshow('image', img)
cv.waitKey()
相关推荐
动亦定2 分钟前
AI与物联网(IoT)的融合
人工智能·物联网
咸鱼鲸28 分钟前
【PyTorch】PyTorch中数据准备工作(AI生成)
人工智能·pytorch·python
停走的风34 分钟前
二刷(李宏毅深度学习,醍醐灌顶,长刷长爽)
人工智能·深度学习
qinyia41 分钟前
Wisdom SSH:探索AI助手在复杂运维任务中的卓越表现
运维·人工智能·ssh
TY-202542 分钟前
二、深度学习——损失函数
人工智能·深度学习
京东零售技术1 小时前
让大模型更懂你,京东零售的算法工程师做了这些事
人工智能·求职
PyAIExplorer1 小时前
图像梯度处理与边缘检测:OpenCV 实战指南
人工智能·opencv·计算机视觉
CoovallyAIHub1 小时前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
biubiubiu07061 小时前
微软云语音识别ASR示例Demo
人工智能·语音识别
CoovallyAIHub1 小时前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉