OpenCV 图像的几何变换

一、图像缩放

1.API

复制代码
cv2.resize(src, dsize, fx=0,fy=0,interpolation = cv2.INTER_LINEAR)

参数:

src:输入图像

dsize:绝对尺寸

fx,fy:相对尺寸

interpolation:插值方法

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
res_1 = cv.resize(img, (2*cols, 2*rows), interpolation=cv.INTER_CUBIC)
cv.imshow('image', res_1)
cv.waitKey()
res_2 = cv.resize(img, None, fx=0.5, fy=0.5)
cv.imshow('image', res_1)
cv.waitKey()

二、图像平移

1.API

python 复制代码
cv2.warpAffine(img, M, dsize)

参数:

img:输入图像

M:2×3移动矩阵,为np.float32类型

dsize:输出图像的大小

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = np.float32([[1, 0, 100], [0, 1, 50]])
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

三、图像旋转

1.API

python 复制代码
cv2.getRotationMatrix2D(center, angle, scale)
cv.warpAffine()

参数:

center:旋转中心

angle:旋转角度

scale:缩放比例

返回值:

M:旋转矩阵

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
M = cv.getRotationMatrix2D((cols/2, rows/2), 120, 1)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

四、仿射变换

1.API

python 复制代码
cv2.getAffineTransform()
cv2.warpAffine()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[100, 100], [200, 50], [100, 250]])
M = cv.getAffineTransform(pts1, pts2)
dst = cv.warpAffine(img, M, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

五、透射变换

1.API

python 复制代码
cv2.getPerspectiveTransform()
cv2.warpPerspective()

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.resize(img, None, fx=0.5, fy=0.5)
[rows, cols] = img.shape[:2]
pts1 = np.float32([[56, 65], [368, 52], [28, 138], [389, 390]])
pts2 = np.float32([[100, 145], [300, 100], [80, 290], [310, 300]])
T = cv.getPerspectiveTransform(pts1, pts2)
dst = cv.warpPerspective(img, T, (cols, rows))
cv.imshow('image', dst)
cv.waitKey()

六、图像金字塔

1.API

python 复制代码
cv2.pyrUp(img) #对图像进行上采样
cv2.pyrDown(img) #对图像进行下采样

2.代码演示

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Genshin.jpeg', -1)
cv.imshow('image', img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
img = cv.pyrDown(img)
cv.imshow('image', img)
cv.waitKey()
相关推荐
搞笑的秀儿1 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术1 小时前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot2 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf2 小时前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
Blossom.1182 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码2 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.02 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队2 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享2 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳03 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习