大语言模型提示词技巧

LLM(Large Language Model)大语言模型时代,提示词(Prompt)很重要,而改进提示词显然有助于在不同任务上获得更好的结果。这就是提示工程背后的整个理念。

下面我们将介绍更高级的提示工程技术,使我们能够完成更复杂和有趣的任务。

一、零样本提示(Zero-shot Prompting)

如今,经过大量数据训练并调整指令的 LLM 能够执行零样本任务。以下是我们使用的一个示例:

提示:

bash 复制代码
将文本分类为中性、负面或正面。
文本:我认为这次假期还可以。
情感:

输出:

中性

请注意,在上面的提示中,我们没有向模型提供任何示例------这就是零样本能力的作用。

指令调整已被证明可以改善零样本学习 Wei等人(2022)。指令调整本质上是在通过指令描述的数据集上微调模型的概念。此外,RLHF(来自人类反馈的强化学习)已被采用以扩展指令调整,其中模型被调整以更好地适应人类偏好。这一最新发展推动了像 ChatGPT 这样的模型。

当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。

二、少样本提示(Few-shot Prompting)

虽然大型语言模型展示了惊人的零样本能力,但在使用零样本设置时,它们在更复杂的任务上仍然表现不佳。少样本提示可以作为一种技术,以启用上下文学习,我们在提示中提供演示以引导模型实现更好的性能。演示作为后续示例的条件,我们希望模型生成响应。

让我们通过 Brown等人2020年 提出的一个例子来演示少样本提示。在这个例子中,任务是在句子中正确使用一个新词。

提示:

bash 复制代码
"whatpu"是坦桑尼亚的一种小型毛茸茸的动物。一个使用whatpu这个词的句子的例子是:
我们在非洲旅行时看到了这些非常可爱的whatpus。
"farduddle"是指快速跳上跳下。一个使用farduddle这个词的句子的例子是:

输出:

当我们赢得比赛时,我们都开始庆祝跳跃。

我们可以观察到,模型通过提供一个示例(即 1-shot)已经学会了如何执行任务。对于更困难的任务,我们可以尝试增加演示(例如 3-shot、5-shot、10-shot 等)。

根据 Min等人(2022)的研究结果,以下是在进行少样本学习时关于演示/范例的一些额外提示:

  • "标签空间和演示指定的输入文本的分布都很重要(无论标签是否对单个输入正确)"
  • 使用的格式也对性能起着关键作用,即使只是使用随机标签,这也比没有标签好得多。
  • 其他结果表明,从真实标签分布(而不是均匀分布)中选择随机标签也有帮助。

让我们尝试一些例子。让我们首先尝试一个随机标签的例子(意味着将标签 Negative 和 Positive 随机分配给输入):

提示:

bash 复制代码
这太棒了!// Negative
这太糟糕了!// Positive
哇,那部电影太棒了!// Positive
多么可怕的节目!//

输出:

Negative

即使标签已经随机化,我们仍然得到了正确的答案。请注意,我们还保留了格式,这也有帮助。实际上,通过进一步的实验,我们发现我们正在尝试的新 GPT 模型甚至对随机格式也变得更加稳健。例如:

提示:

bash 复制代码
Positive This is awesome! 
This is bad! Negative
Wow that movie was rad!
Positive
What a horrible show! --

输出:

Negative

上面的格式不一致,但模型仍然预测了正确的标签。我们必须进行更彻底的分析,以确认这是否适用于不同和更复杂的任务,包括提示的不同变体。

2.1 少样本提示的限制

标准的少样本提示对许多任务都有效,但仍然不是一种完美的技术,特别是在处理更复杂的推理任务时。让我们演示为什么会这样。您是否还记得之前提供的任务:

这组数字中的奇数加起来是一个偶数:15、32、5、13、82、7、1。A:

如果我们再试一次,模型输出如下:

是的,这组数字中的奇数加起来是107,是一个偶数。

这不是正确的答案,这不仅突显了这些系统的局限性,而且需要更高级的提示工程。

让我们尝试添加一些示例,看看少样本提示是否可以改善结果。

提示:

bash 复制代码
这组数字中的奇数加起来是一个偶数:4、8、9、15、12、2、1。
A:答案是False。
这组数字中的奇数加起来是一个偶数:17、10、19、4、8、12、24。
A:答案是True。
这组数字中的奇数加起来是一个偶数:16、11、14、4、8、13、24。
A:答案是True。
这组数字中的奇数加起来是一个偶数:17、9、10、12、13、4、2。
A:答案是False。
这组数字中的奇数加起来是一个偶数:15、32、5、13、82、7、1。
A:

输出:

答案是True。

这没用。似乎少样本提示不足以获得这种类型的推理问题的可靠响应。上面的示例提供了任务的基本信息。如果您仔细观察,我们引入的任务类型涉及几个更多的推理步骤。换句话说,如果我们将问题分解成步骤并向模型演示,这可能会有所帮助。最近,思维链(CoT)提示 已经流行起来,以解决更复杂的算术、常识和符号推理任务。

总的来说,提供示例对解决某些任务很有用。当零样本提示和少样本提示不足时,这可能意味着模型学到的东西不足以在任务上表现良好。从这里开始,建议开始考虑微调您的模型或尝试更高级的提示技术。接下来,我们将讨论一种流行的提示技术,称为思维链提示,它已经获得了很多关注。

三、链式思考CoT提示(Chain-of-Thought Prompting)

图片来源:Wei等人(2022)

Wei等人(2022)中引入的链式思考(CoT)提示通过中间推理步骤实现了复杂的推理能力。您可以将其与少样本提示相结合,以获得更好的结果,以便在回答之前进行推理的更复杂的任务。

提示:

bash 复制代码
这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。
A:将所有奇数相加(9、15、1)得到25。答案为False。
这组数中的奇数加起来是偶数:17、10、19、4、8、12、24。
A:将所有奇数相加(17、19)得到36。答案为True。
这组数中的奇数加起来是偶数:16、11、14、4、8、13、24。
A:将所有奇数相加(11、13)得到24。答案为True。
这组数中的奇数加起来是偶数:17、9、10、12、13、4、2。
A:将所有奇数相加(17、9、13)得到39。答案为False。
这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。
A:

输出:

将所有奇数相加(15、5、13、7、1)得到41。答案为False。

哇!我们可以看到在提供推理步骤时得到了完美的结果。实际上,我们可以通过提供更少的示例来解决此任务,即仅一个示例似乎就足够了:

提示:

bash 复制代码
这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。
A:将所有奇数相加(9、15、1)得到25。答案为False。
这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。
A:

输出:

将所有奇数相加(15、5、13、7、1)得到41。答案为False。

请记住,作者声称这是足够大的语言模型才会出现的新兴能力。

3.1 零样本 COT 提示

图片来源:Kojima等人(2022)

最近提出的一个新想法是零样本CoT(Kojima等人,2022年),它基本上涉及将"让我们逐步思考"添加到原始提示中。让我们尝试一个简单的问题,看看模型的表现如何:

提示:

我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?

输出:

11个苹果

答案是不正确的!现在让我们尝试使用特殊提示。

提示:

我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?让我们逐步思考。

输出:

bash 复制代码
首先,您从10个苹果开始。
您给了邻居和修理工各2个苹果,所以您还剩下6个苹果。
然后您买了5个苹果,所以现在您有11个苹果。
最后,您吃了1个苹果,所以您还剩下10个苹果。

令人印象深刻的是,这个简单的提示在这个任务中非常有效。这在您没有太多示例可用于提示时特别有用。

四、自我一致性提示

也许在提示工程中更高级的技术之一是自我一致性。由 Wang等人(2022)提出,自我一致性旨在"替换链式思维提示中使用的天真贪婪解码方法"。其想法是通过少样本 CoT 采样多个不同的推理路径,并使用生成结果选择最一致的答案。这有助于提高 CoT 提示在涉及算术和常识推理的任务中的性能。

让我们尝试以下算术推理示例:

提示:

当我6岁时,我的妹妹是我的一半年龄。现在我70岁了,我的妹妹多大?

输出:

35

输出是错误的!我们如何通过自我一致性来改进这个问题?让我们试试。我们将使用 Wang 等人 2022 年的少量样本范例(表17):

提示:

bash 复制代码
Q:林中有15棵树。林业工人今天将在林中种树。完成后,将有21棵树。林业工人今天种了多少棵树?
A:我们从15棵树开始。后来我们有21棵树。差异必须是他们种树的数量。因此,他们必须种了21-15 = 6棵树。答案是6。
Q:停车场有3辆汽车,又来了2辆汽车,停车场有多少辆汽车?
A:停车场已经有3辆汽车。又来了2辆。现在有3 + 2 = 5辆汽车。答案是5。
Q:Leah有32块巧克力,她的姐姐有42块。如果他们吃了35块,他们总共还剩多少块?
A:Leah有32块巧克力,Leah的姐姐有42块。这意味着最初有32 + 42 = 74块巧克力。已经吃了35块。因此,他们总共还剩74-35 = 39块巧克力。答案是39。
Q:Jason有20个棒棒糖。他给Denny一些棒棒糖。现在Jason只有12个棒棒糖。Jason给Denny多少棒棒糖?
A:Jason有20个棒棒糖。因为他现在只有12个,所以他必须把剩下的给Denny。他给Denny的棒棒糖数量必须是20-12 = 8个棒棒糖。答案是8。
Q:Shawn有五个玩具。圣诞节,他从他的父母那里得到了两个玩具。他现在有多少个玩具?
A:他有5个玩具。他从妈妈那里得到了2个,所以在那之后他有5 + 2 = 7个玩具。然后他从爸爸那里得到了2个,所以总共他有7 + 2 = 9个玩具。答案是9。
Q:服务器房间里有9台计算机。从周一到周四,每天都会安装5台计算机。现在服务器房间里有多少台计算机?
A:从周一到周四有4天。每天都添加了5台计算机。这意味着总共添加了4 * 5 =20台计算机。一开始有9台计算机,所以现在有9 + 20 = 29台计算机。答案是29。
Q:Michael有58个高尔夫球。星期二,他丢失了23个高尔夫球。星期三,他又丢失了2个。星期三结束时他还剩多少个高尔夫球?
A:Michael最初有58个球。星期二他丢失了23个,所以在那之后他有58-23 = 35个球。星期三他又丢失了2个,所以现在他有35-2 = 33个球。答案是33。
Q:Olivia有23美元。她用每个3美元的价格买了五个百吉饼。她还剩多少钱?
A:她用每个3美元的价格买了5个百吉饼。这意味着她花了15美元。她还剩8美元。
Q:当我6岁时,我的妹妹是我的一半年龄。现在我70岁了,我的妹妹多大?
A:

输出1:

当我6岁时,我的妹妹是我的一半年龄,也就是3岁。现在我70岁了,所以她是70-3 = 67岁。答案是67。

输出2:

当叙述者6岁时,他的妹妹是他年龄的一半,也就是3岁。现在叙述者70岁了,他的妹妹应该是70-3 = 67岁。答案是67。

输出3:

当我6岁时,我的妹妹是我的一半年龄,也就是3岁。现在我70岁了,所以她是70/2 = 35岁。答案是35。

计算最终答案涉及几个步骤(详见论文),但为了简单起见,我们可以看到已经出现了大多数答案,因此这基本上将成为最终答案。

相关推荐
C7211BA2 小时前
基于网页的大语言模型聊天机器人
人工智能·语言模型·机器人
铭瑾熙3 小时前
深度学习之人脸检测
人工智能·深度学习
白光白光3 小时前
量子卷积神经网络
人工智能·神经网络·cnn
陈苏同学5 小时前
机器翻译 & 数据集 (NLP基础 - 预处理 → tokenize → 词表 → 截断/填充 → 迭代器) + 代码实现 —— 笔记3.9《动手学深度学习》
人工智能·pytorch·笔记·python·深度学习·自然语言处理·机器翻译
狂放不羁霸5 小时前
组会 | 大语言模型 + LoRA
人工智能·语言模型·自然语言处理
sp_fyf_20245 小时前
【大语言模型】ACL2024论文-20 SCIMON:面向新颖性的科学启示机器优化
人工智能·深度学习·机器学习·语言模型·自然语言处理·数据挖掘
宋138102797205 小时前
SouVR Feedback force7 力反馈设备
人工智能·机器人·vr
我叫白小猿5 小时前
【大模型-智能体】AutoGen Studio测试和导出工作流程
人工智能·python·workflow·工作流·智能体·autogen
CopyLower6 小时前
AI赋能电商:智能购物推荐、会员分类与商品定价的创新探索
人工智能·分类·数据挖掘
界面开发小八哥6 小时前
界面控件DevExpress WinForms v24.2新功能预览 - 人工智能(AI)
人工智能·.net·界面控件·devexpress·ui开发