深度学习--离线数据增强

最近做项目遇见数据集背景非常单一,为了增加模型的返回能里,只能自己做一些数据增强来增加背景的多样性。代码如下:

python 复制代码
import numpy as np
import cv2


def create_mask(box, height, width):
    """
    创建一个全零的掩码图像,目标区域是255(白色),北京是0(黑色)
    :param box: 坐标框
    :param height: 图片高
    :param width: 图片宽
    :return:
    """
    mask = np.zeros((height, width), dtype=np.uint8)

    # 在掩码图像上绘制矩形
    for b in box:
        x_min, y_min, x_max, y_max = b
        mask[y_min:y_max, x_min:x_max] = 255

    return mask


def blend_images_with_mask(image1, image2, mask, alpha=0.3, beta=0.7):
    """

    :param image1:
    :param image2:
    :param mask:
    :param alpha:
    :param beta:
    :return:
    """
    # 根据mask将目标从其中抠出来,除了目标区域其余都是0
    obj_masked = cv2.bitwise_or(image1, image1, mask=mask)
    # 根据mask将image1和image2中目标位置删除置为0(目标区域是黑色)
    image1_masked = cv2.bitwise_and(image1, image1, mask=cv2.bitwise_not(mask))
    image2_masked = cv2.bitwise_and(image2, image2, mask=cv2.bitwise_not(mask))

    # image1和image2融合
    blended = cv2.addWeighted(image1_masked, alpha, image2_masked, beta, 0)

    # 将目标放回融合后图像对应位置
    result = cv2.bitwise_or(blended, obj_masked)

    return result


if __name__ == '__main__':
    # 示例用法
    image1 = cv2.imread('image1.jpg')  # 原图
    image2 = cv2.imread('image2.jpg')  # 背景图
    # 保证两张图shape一致,这里只是粗暴的直接resize成了一样尺寸,
    # TODO:后续可以实现使用等比例缩放,多余区域填灰条的方式resize
    image2 = cv2.resize(image2, image1.shape[:2][::-1], )

    # 假设box是一个形状为 (N, 4) 的 numpy 数组,每行代表一个目标的坐标 [x_min, y_min, x_max, y_max]
    # TODO:这里的数据是直接复制过来的,可以改为从文件中读取
    box = np.array([[958, 302, 1046, 416],
                    [871, 316, 975, 464],
                    [1626, 445, 1676, 551],
                    ])  # 两个目标的坐标

    # TODO:添加代码将image1原图整图移动,保证目标不总是出现在同一个位置

    # 向外扩展一些,多保留一些原图背景,不会显得太突兀
    # TODO:后续改成随机向外扩展,实现完整代码,包括外扩后边界检查
    roi_box = box + np.array([-50, -50, 50, 50])

    # 获取图像宽高
    img_h, img_w = image1.shape[:2]
    # 创建mask掩码
    mask = create_mask(roi_box, img_h, img_w)

    # 设置融合比例
    # TODO:设置成随机
    alpha = 0.2  # image1 的比例
    beta = 0.8  # image2 的比例

    # 进行图像融合
    result = blend_images_with_mask(image1, image2, mask, alpha, beta)

    cv2.namedWindow('Blended Image', 0)
    cv2.resizeWindow('Blended Image', 1920 // 2, 1080 // 2)
    # 显示结果
    cv2.imshow('Blended Image', result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

image1

image2

obj_mask

image1_masked

image2_masked

blended

result

相关推荐
java1234_小锋32 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 计算图和 tf.function 简介
python·深度学习·tensorflow·tensorflow2
szxinmai主板定制专家38 分钟前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
聚客AI1 小时前
🌈提示工程已过时?上下文工程从理论到实践的完整路线图
人工智能·llm·agent
C嘎嘎嵌入式开发1 小时前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
红宝村村长1 小时前
【学习笔记】从零构建大模型
深度学习
文心快码BaiduComate1 小时前
开工不累,双强护航:文心快码接入 DeepSeek-V3.2-Exp和 GLM-4.6,助你节后高效Coding
前端·人工智能·后端
AI小云1 小时前
【Python与AI基础】Python编程基础:函数与参数
人工智能·python
white-persist2 小时前
MCP协议深度解析:AI时代的通用连接器
网络·人工智能·windows·爬虫·python·自动化
新智元2 小时前
谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
人工智能·openai