Sklearn支持向量机

支持向量机(Support Vector Machine, SVM)是一种常用的分类算法,它可以用于解决二分类和多分类问题。在Python中,你可以使用Sklearn库来实现SVM。下面是一个简单的例子,展示了如何使用Sklearn进行SVM分类。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建SVM模型
svm_model = SVC(kernel='linear')  # 使用线性核
# 训练模型
svm_model.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = svm_model.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们同样使用了鸢尾花(Iris)数据集。SVM使用核函数来将输入特征映射到高维空间,以便可以找到一个超平面来分隔数据。在这个例子中,我们使用了线性核(kernel='linear'),但在实际应用中,你也可以使用其他类型的核,如多项式核、径向基函数(RBF)核等。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个SVM模型,选择线性核。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,SVM的参数有很多,如C(正则化参数)、gamma(用于RBF核的参数)、degree(用于多项式核的参数)等,你可能需要根据具体问题调整这些参数以获得最佳性能。
相关推荐
我星期八休息10 分钟前
深入理解跳表(Skip List):原理、实现与应用
开发语言·数据结构·人工智能·python·算法·list
lingran__11 分钟前
速通ACM省铜第四天 赋源码(G-C-D, Unlucky!)
c++·算法
haogexiaole38 分钟前
贪心算法python
算法·贪心算法
希望20171 小时前
图论基础知识
算法·图论
m0_713541841 小时前
systemverilog如何解决不能使用变量索引来进行位选择的范围指定
算法·systemverilog
七牛云行业应用1 小时前
深度解析强化学习(RL):原理、算法与金融应用
人工智能·算法·金融
和编程干到底1 小时前
数据结构 栈和队列、树
数据结构·算法
纪元A梦1 小时前
贪心算法在GNN邻域采样问题中的深度解析
算法·贪心算法
宇钶宇夕1 小时前
西门子 S7-200 SMART PLC 核心指令详解:从移位、上升沿和比较指令到流水灯控制程序实战
运维·算法·自动化
爱编程的化学家2 小时前
代码随想录算法训练营第十一天--二叉树2 || 226.翻转二叉树 / 101.对称二叉树 / 104.二叉树的最大深度 / 111.二叉树的最小深度
数据结构·c++·算法·leetcode·二叉树·代码随想录