Sklearn支持向量机

支持向量机(Support Vector Machine, SVM)是一种常用的分类算法,它可以用于解决二分类和多分类问题。在Python中,你可以使用Sklearn库来实现SVM。下面是一个简单的例子,展示了如何使用Sklearn进行SVM分类。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建SVM模型
svm_model = SVC(kernel='linear')  # 使用线性核
# 训练模型
svm_model.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = svm_model.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们同样使用了鸢尾花(Iris)数据集。SVM使用核函数来将输入特征映射到高维空间,以便可以找到一个超平面来分隔数据。在这个例子中,我们使用了线性核(kernel='linear'),但在实际应用中,你也可以使用其他类型的核,如多项式核、径向基函数(RBF)核等。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个SVM模型,选择线性核。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,SVM的参数有很多,如C(正则化参数)、gamma(用于RBF核的参数)、degree(用于多项式核的参数)等,你可能需要根据具体问题调整这些参数以获得最佳性能。
相关推荐
汉克老师3 小时前
第十四届蓝桥杯青少组C++选拔赛[2023.2.12]第二部分编程题(5、机甲战士)
c++·算法·蓝桥杯·01背包·蓝桥杯c++·c++蓝桥杯
Mr_Xuhhh4 小时前
项目需求分析(2)
c++·算法·leetcode·log4j
c++bug4 小时前
六级第一关——下楼梯
算法
Morri34 小时前
[Java恶补day53] 45. 跳跃游戏Ⅱ
java·算法·leetcode
林木辛5 小时前
LeetCode热题 15.三数之和(双指针)
算法·leetcode·双指针
AndrewHZ5 小时前
【3D算法技术】blender中,在曲面上如何进行贴图?
算法·3d·blender·贴图·三维建模·三维重建·pcg
Jared_devin5 小时前
二叉树算法题—— [蓝桥杯 2019 省 AB] 完全二叉树的权值
数据结构·c++·算法·职场和发展·蓝桥杯
AI 嗯啦6 小时前
数据结构深度解析:二叉树的基本原理
数据结构·算法
和光同尘@7 小时前
66. 加一 (编程基础0到1)(Leetcode)
数据结构·人工智能·算法·leetcode·职场和发展
CHEN5_027 小时前
leetcode-hot100 11.盛水最多容器
java·算法·leetcode