九种背包问题(C++)

0-1背包,背包大小target,占用容积vec[i][0],可以带来的利益是vec[i][1]

一件物品只能取一次,先遍历物品然后遍历背包更新不同容积下最大的利益

cpp 复制代码
int func(vector<vector<int>>&vec,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<vec.size();i++){
        for(int w=target;w>=vec[i][0];w--){
            dp[w]=max(dp[w-vec[i][0]]+vec[i][1],dp[w]);
        }
    }
    return dp[w];
}

完全背包,与0-1背包相比差别在于物品可以多次选择了

思路和0-1背包差不多,只不过遍历背包容积时从低到高,每次更新时之前都是包含当前物品最优

cpp 复制代码
int func1(vector<vector<int>>&vec,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<vec.size();i++){
        for(int w=vec[i][0];w<=target;w++){
            dp[w]=max(dp[w-vec[i][0]]+vec[i][1],dp[w]);
        }
    }
    return dp[w];
}

多重背包,每种物品有vec[i][j][2]个

思路1,二进制商品拆分(比如:111可以组合成1-6任意数字),转化为0-1背包问题

cpp 复制代码
int func2(vector<vector<int>>&vec,int target){
    int n=vec.size();
    vector<pair<int,int>>goods;
    for(auto&i:vec){
        for(int j=1;j<=i[2];i*=2){
            i[2]=i[2]-j;
            goods.push_back({i[0]*j,i[1]*j});
        }
        goods.push_back({i[2]*i[0],i[2]*i[1]});
    }
    vector<int>dp(target+1,0);
    for(int i=0;i<goods.size();i++){
        for(int j=target;j>=goods[i].first;j--){
            dp[j]=max(dp[j],dp[j-goods[i].first]+goods[i].second);
        }
    }
    return dp[target];
}

思路2 添加物品数量层遍历

cpp 复制代码
int func3(vector<vector<int>>&vec,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<vec.size();i++){
        for(int j=target;j>=vec[i][0];j--){
            for(int k=1;k*vec[i][0]<j&&k<=vec[i][2];k++){
                dp[j]=max(dp[j],dp[j-k*vec[i][0]]+k*vec[i][1]);
            }
        }
    }
    return dp[target];
}

混合背包,背包中的物品可以有无限个或者有限个

vec[i][0]重量,vec[i][1]价值,vec[i][2]数量

cpp 复制代码
int func4(vector<vector<int>>&vec,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<vec.size();i++){
        if(vec[i][2]==0){
            for(int j=vec[i][0];j<=target;j++){
                dp[j]=max(dp[j],dp[j-vec[i][0]]+vec[i][1]);
            }
        }
        else {
            for(int j=target;j>=vec[i][0];j--){
                for(int k=1;k*vec[i][0]<j&&k<=vec[i][2];k++){
                    dp[j]=max(dp[j],dp[j-k*vec[i][0]]+k*vec[i][1]);
                }
            }
        }
    }
    return dp[target];
}

分组背包

商品分组,每组最多只能选一个,vec[i][k][0]重量,vec[i][k][1]价值

cpp 复制代码
int func5(vector<vector<vector<int>>>&vec,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<vec.size();i++){
        for(int j=target;j>=0;j--){//遍历背包容积
            for(int k=0;k<vec[i].size();k++){//遍历商品组内商品
                if(j>=vec[i][k][0]) dp[j]=max(dp[j],dp[j-vec[i][k][0]]+vec[i][k][1]);
            }
        }
    }
    return dp[target];
}

二维背包

约束条件增加,vec[i][0]价值,vec[i][1]是第一个约束条件,vec[i][2]是第二个约束条件

cpp 复制代码
int func6(vector<vector<int>>&vec,int target1,int target2){
    vector<vector<int>>dp(target1+1,vector<int>(target2+1,0));
    for(int i=0;i<vec.size();i++){
        for(int j=target1;j>=vec[i][1];j--){
            for(int k=target2;k>=vec[i][2];k--){
                dp[j][k]=max(dp[j][k],dp[j-vec[i][1]][k-vec[i][2]]+vec[i][0]);
            }
        }
    }
    return dp[target1][target2];
}

树状背包

买一件物品前必须买另一件

map键值是编号,first负重,second价值,买d[i][0]前必须买d[i][1],d[i][1]=0时表示没有依赖

思路,回溯思想自底向上遍历,每一层子树作为一个临时的商品组,根节点必须买,根节点买不了时更新为0

原理是把一棵树分为整合为前缀和组,实现起来保证每种情况更新到且在回溯前更新完即可

注意更新的数据所在的层级

cpp 复制代码
int func7(unordered_map<int,pair<int,int>>&map,vector<vector<int>>&d,int target){
    int n=map.size();
    vector<vector<int>>tree(n+1);
    vector<vector<int>>dp(n+1,vector<int>(target+1));
    for(auto i:d){
        tree[i[1]].push_back(i[0]);
    }
    function<void(int)>dfs=[&](int root){
        for(int i=0;i<tree[root].size();i++){//遍历商品组
            int son=tree[root][i];
            dfs(son);
            for(int j=target-map[root].first;j>=map[son].first;j--){//商品组内不应该包含根节点,所以需要保留
                for(int k=0;k<=j;k++){//对商品的抽象,直接抽象为了对应的大小,不存在时为0
                    dp[root][j]=max(dp[root][j],dp[root][j-k]+dp[son][k]);
                }
            }
        }
        for(int j=target;j>=map[root].first;j--)//根节点必须买 
            dp[root][j]=dp[root][j-map[root].first]+map[root].second;
        for(int j=0;j<map[root].first;j++) //根节点买不了的话g
            dp[root][j]=0;
    };
    dfs(0);
    return dp[0][target];
}

小数/分数背包,贪心

物品可以选择部分

vec[i][0]重量,vec[i][1]价值

cpp 复制代码
int func8(vector<int>&vec,int target){
    sort(vec.begin(),vec.end(),[](vector<int>&v1,vector<int>&v2){
        return v1[1]*1.0/v1[0]>v2[1]*1.0/v2[0];
    });
    int value=0;
    for(int i=0;i<vec.size()&&target;i++){
        if(target>vec[i][0]){
            target-=vec[i][0];
            value+=vec[i][1];
        }
        else {
            value+=target*vec[i][1]*1.0/vec[i][0];
            target=0;
        }
    }
    return value;
}

泛化背包问题

没有固定代价和价值

cpp 复制代码
int value(int index){...}
int weight(int index){...}
int func9(int size,int target){
    vector<int>dp(target+1,0);
    for(int i=0;i<size;i++){
        for(int w=target;w>=weight(i);w--){
            dp[w]=max(dp[w],dp[w-weight(i)]+value(i));
        }
    }
    return dp[target];
}
相关推荐
Coovally AI模型快速验证33 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
一只小bit36 分钟前
C++之初识模版
开发语言·c++
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨2 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
CodeClimb2 小时前
【华为OD-E卷 - 第k个排列 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
BoBoo文睡不醒2 小时前
动态规划(DP)(细致讲解+例题分析)
算法·动态规划
apz_end2 小时前
埃氏算法C++实现: 快速输出质数( 素数 )
开发语言·c++·算法·埃氏算法
仟濹3 小时前
【贪心算法】洛谷P1106 - 删数问题
c语言·c++·算法·贪心算法
北顾南栀倾寒3 小时前
[Qt]系统相关-网络编程-TCP、UDP、HTTP协议
开发语言·网络·c++·qt·tcp/ip·http·udp
CM莫问4 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别