22 OpenCV 直方图计算

文章目录

  • 直方图概念
  • [split 通道分离函数](#split 通道分离函数)
  • [calcHist 计算直方图](#calcHist 计算直方图)
  • [normalize 归一化函数](#normalize 归一化函数)
  • 示例

直方图概念

上述直方图概念是基于图像像素值,其实对图像梯度、每个像素的角度、等一切图像的属性值,我们都可以建立直方图。这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见的。

直方图最常见的几个属性:

  • dims 表示维度,对灰度图像来说只有一个通道值dims=1
  • bins 表示在维度中子区域大小划分,bins=256,划分为256个级别
  • range 表示值得范围,灰度值范围为[0~255]之间

split 通道分离函数

c 复制代码
split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组

calcHist 计算直方图

c 复制代码
calcHist(
 const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)

normalize 归一化函数

c 复制代码
void cv::normalize  (   InputArray      src,
        InputOutputArray    dst,
        double      alpha = 1,
        double      beta = 0,
        int     norm_type = NORM_L2,
        int     dtype = -1,
        InputArray      mask = noArray() 
    )
参数解释
. src: 输入数组
. dst: 输出数组,与src有相同的尺寸
. alpha: 将数组归一化范围的最大值,有默认值1
. beta: 归一化的最小值,有默认值0
. norm_type: 归一化方式,可以查看NormTypes()函数查看详细信息,有默认值NORM_L2
. dtype: 当该值取负数时,输出数组与src有相同类型,否则,与src有相同的通道并且深度为CV_MAT_DEPTH(dtype)
. mask: 可选的掩膜版

归一化函数的作用是将数据转换为特定范围内的值,通常是[0, 1]或者[-1, 1]。这种转换可以消除不同特征之间的量纲影响,使得不同特征之间具有可比性,有利于模型的训练和优化。归一化还有助于加快模型的收敛速度,提高模型的稳定性和准确性。

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.jpg");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	imshow("test", src);
	// 分通道显示
	vector<Mat> bgr_planes; // 存储分离后的BGR三个通道
	split(src, bgr_planes); // 图像分离为三个通道

	// 计算直方图
	int histSize = 256; // 直方图尺寸
	float range[] = { 0, 256 };
	const float *histRanges = { range };
	Mat b_hist, g_hist, r_hist;
	calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRanges, true, false); // 计算蓝色通道直方图
	calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRanges, true, false); // 计算绿色通道直方图
	calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRanges, true, false); // 计算红色通道直方图

	// 归一化
	int hist_h = 400; // 直方图图像高度
	int hist_w = 512; // 直方图图像宽度
	int bin_w = hist_w / histSize; // 直方图条带宽度
	Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0)); // 创建直方图图像,黑色背景
	normalize(b_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat()); // 归一化蓝色通道直方图
	normalize(g_hist, g_hist, 0, hist_h, NORM_MINMAX, -1, Mat()); // 归一化绿色通道直方图
	normalize(r_hist, r_hist, 0, hist_h, NORM_MINMAX, -1, Mat()); // 归一化红色通道直方图

	// render histogram chart
	for (int i = 1; i < histSize; i++) {
		// 绘制蓝色通道直方图
		line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(b_hist.at<float>(i - 1))),
			Point((i)*bin_w, hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, LINE_AA);
		// 绘制绿色通道直方图
		line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(g_hist.at<float>(i - 1))),
			Point((i)*bin_w, hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, LINE_AA);
		// 绘制红色通道直方图
		line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(r_hist.at<float>(i - 1))),
			Point((i)*bin_w, hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, LINE_AA);
	}

	imshow(output_title, histImage);
	waitKey(0);
	return 0;
}
 
相关推荐
文火冰糖的硅基工坊1 分钟前
[人工智能-大模型-122]:模型层 - RNN是通过神经元还是通过张量时间记录状态信息?时间状态信息是如何被更新的?
人工智能·rnn·深度学习
Dev7z1 分钟前
基于深度学习的中国交通警察手势识别与指令优先级判定系统
人工智能·深度学习
阿_旭3 分钟前
复杂环境下驾驶员注意力实时检测: 双目深度补偿 + 双向 LSTM
人工智能·lstm·驾驶员注意力
Elastic 中国社区官方博客1 小时前
Elastic AI agent builder 介绍(三)
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
这张生成的图像能检测吗1 小时前
(论文速读)YOLA:学习照明不变特征的低光目标检测
图像处理·人工智能·目标检测·计算机视觉·低照度
ZPC82102 小时前
opencv 获取图像中物体的坐标值
人工智能·python·算法·机器人
亚里随笔2 小时前
AsyPPO_ 轻量级mini-critics如何提升大语言模型推理能力
人工智能·语言模型·自然语言处理·llm·agentic
coding_ksy2 小时前
基于启发式的多模态风险分布越狱攻击,针对多模态大型语言模型(ICCV 2025) - 论文阅读和解析
人工智能·语言模型
算家计算2 小时前
5年后手机和APP将成历史?马斯克最新预言背后:端云协同与AI操作系统的未来架构
人工智能·云计算·资讯