COX回归影响因素分析的基本过程与方法

在科学研究中,经常遇到分类的结局,主要是二分类结局(阴性/阳性;生存/死亡),研究者可以通过logistic回归来探讨影响结局的因素,但很多时候logistic回归方法无法使用。如比较两种手段治疗新冠肺炎效果(比如瑞德西韦和安慰剂组),可能在1个月的效果分别是95%和90%,两者率的比较,在统计学上可能没有差异。

这时候,我们还可以从发生率发生的速度来分析,探讨影响发生速度的因素 。这便是Cox回归基本思维。

COX回归分析的常用的软件还是SPSS,但是SPSS的单因素分析十分繁琐 ,需要逐个纳入变量,并且分析结果还需要自己整理为规范的三线表格式,R语言 的一些R包可以简化最终的分析结果,并且达到批量分析的目的,但是因为需要一些代码基础,具有一定的门槛

因此,这里为大家介绍一下由浙江中医药大学的郑卫军教授 基于R语言开发的免费公开统计分析平台!

2步法!解决多种COX回归策略!

浏览器搜索风暴统计,点击"风暴智能统计------生存分析------生存分析全套",完成数据的导入与整理后,就可以直接开始COX回归分析啦!

1.COX回归两步法解决

第一, 选入变量,包括生存结局变量、生存时间自变量、定量自变量、分类自变量

第二,选择自变量的筛选方式,包括P阈值,回归方法。

P阈值 决定了单因素分析时,P值小于多少会进入多因素回归,一般为0.05,在变量过少时,也可以放宽要求,0.1,0.2也是有的。

回归方法有先单后多(选"否"),双向逐步回归,向前逐步回归,向后逐步回归,根据P<0.05筛选。

选择完成后,直接实时给出COX回归的分析结果,呈现出简洁的三线表格,包括β值,SE值,Z值,P值HR值及95%置信区间

2.两种常见分析策略

下面再给大家介绍两种常见的COX回归分析策略------先单后多法、逐步回归法!一站式解决,菜单式操作,小白轻松上手!

2.1 开展先单后多方法分析

根据研究需要,如果需要开展先单后多 的自变量筛选方式,那么**"是否开展逐步回归分析"选择"否"**。P阈值自行选择,当选择不限制时,选入的全部变量都将纳入多因素回归分析。

2.2 开展逐步回归方法分析

逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于阈值的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归

注: 先单后多与逐步回归是两种不同的自变量筛选方式,先单后多主要根据单因素P阈值进行筛选;逐步回归则是通过变量的逐个纳入与剔除,以AIC值最小作为最优模型选择准则 。因此有些变量P值大于预设的阈值但仍保留在逐步回归模型中也是正常的哦,想要避免这种情况的发生,可以选择"根据P<0.05筛选"的逐步回归!

3.下载结果

完成回归分析后,平台给出了多种结果展示,仅展示单因素回归结果仅展示多因素回归结果单因素+多因素显示在同一张表格中!

然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果!

4.查看R语言分析源码

目前风暴统计平台还会给出R语言输出结果方差膨胀因子(VIF)

相关推荐
ARM+FPGA+AI工业主板定制专家几秒前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
新智元7 分钟前
刚刚,谷歌深夜上新 Veo 3.1!网友狂刷 2.75 亿条,Sora 2 要小心了
人工智能·openai
yuzhuanhei15 分钟前
Segment Anything(SAM)
人工智能
做科研的周师兄18 分钟前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
lll上21 分钟前
三步对接gpt-5-pro!地表强AI模型实测
人工智能·gpt
喜欢吃豆25 分钟前
一份关于语言模型对齐的技术论述:从基于PPO的RLHF到直接偏好优化
人工智能·语言模型·自然语言处理·大模型·强化学习
Sunsets_Red32 分钟前
差分操作正确性证明
java·c语言·c++·python·算法·c#
超龄超能程序猿1 小时前
Spring AI Alibaba 与 Ollama对话历史的持久化
java·人工智能·spring
孤狼灬笑1 小时前
机器学习四范式(有监督、无监督、强化学习、半监督学习)
人工智能·强化学习·无监督学习·半监督学习·有监督学习
【杨(_> <_)】1 小时前
SAR信号处理重要工具-傅里叶变换(二)
算法·信号处理·傅里叶分析·菲涅尔函数