一遍过。如果一开始第二个元素比第一个元素小,就选择第二个元素开始,这样买入价低,反之则是加上第二个元素和第一个元素的差价,并从第二个元素开始,比较第三个元素和第二个元素的相对大小关系。
cpp
class Solution {
public:
int maxProfit(vector<int>& prices) {
int total=0;
int res=0;
int st=prices[0];
int ma=0;
int mi=0;
for(int i=1;i<prices.size();i++){
if(prices[i]>st){
mi=prices[i]-st;
res+=mi;
st=prices[i];
}
else{
st=min(st,prices[i]);
}
}
return res;
}
};
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
题解的方法:更简洁。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
};
一遍过。当前能走多远,就说明能覆盖多大范围。范围内的可以继续走当前数表示的步数,得到最大覆盖范围。如果走完了最大覆盖范围,仍旧没走到数组末,那么就是false,反之true。
cpp
class Solution {
public:
bool canJump(vector<int>& nums) {
int len=nums.size();
int res=0;
for(int i=0;i<=res;i++){
res=max(i+nums[i],res);
if(res>=len-1) return true;
}
return false;
}
};
看了题解。
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。
所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
必须要从开头开始跳。
cpp
class Solution {
public:
int jump(vector<int>& nums) {
int len=nums.size();
if(nums.size()==1) return 0;
int cur=0;
int ans=0;
int next=0;
for(int i=0;i<len;i++){
next=max(next,i+nums[i]);
if(i==cur){
ans++;
cur=next;
if(next>=len-1){
break;
}
}
}
return ans;
}
};
另一种思路:
针对于方法一的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。想要达到这样的效果,只要让移动下标,最大只能移动到 nums.size - 2 的地方就可以了。
因为当移动下标指向 nums.size - 2 时:
- 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:
// 版本二
class Solution {
public:
int jump(vector<int>& nums) {
int curDistance = 0; // 当前覆盖的最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖的最远距离下标
for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
if (i == curDistance) { // 遇到当前覆盖的最远距离下标
curDistance = nextDistance; // 更新当前覆盖的最远距离下标
ans++;
}
}
return ans;
}
};
其精髓在于控制移动下标 i 只移动到 nums.size() - 2 的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。