前言
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。
第 一 注意力(Attention)机制
**1、注意力机制的背景和动机(**为什么需要注意力机制?注意力机制的起源和发展)。
**2、注意力机制的基本原理:**用机器翻译任务带你了解Attention机制、如何计算注意力权重?
3、注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、......)。
4、注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)
第 二 Transformer 模型
1、Transformer模型拓扑结构
2、Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、......)。
4、计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)
第 三 生成式模型
1、变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。
**2、生成式对抗网络GAN(**GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)。
3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。
4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。
第 四 目标检测算法
1. 目标检测任务与图像分类识别任务的区别与联系 。
**2. 两阶段(Two-stage)目标检测算法:**R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。
**3. 一阶段(One-stage)目标检测算法:**YOLO模型、SDD模型(拓扑结构及工作原理)。
第 五 图神经网络
1. 图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2. 图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。
3. 图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。
4. 图卷积网络(GCN)的工作原理 。
**5. 图神经网络的变种和扩展:**图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。
第 六 强化学习
1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。
3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
第 七 深度学习模型可解释性与可视化方法
1、 什么是模型可解释性?为什么需要对深度学习模型进行解释?
2、 可视化方法 有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、 类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。
4、 t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征