【PyTorch】解决PyTorch安装中torch.cuda.is_available()返回False的问题

最近在安装PyTorch时遇到torch.cuda.is_available() = False的问题,特此记录下解决方法,以帮助其他遇到相同问题的人。

问题描述

Ubuntu 20.04,3060 Laptop,安装了CUDA 11.4,在Anaconda下新建了Python 3.8的环境,并且使用pytorch官网https://pytorch.org/get-started/previous-versions/,提供的如下安装指令

bash 复制代码
# CUDA 11.3
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

安装适合11.3的版本是因为CUDA 11.4版本似乎比较特殊,官网并未提供适用于11.4的pytorch,经网上查询得知可以兼容11.3的。

然而,在虚拟环境中import torch之后使用torch.cuda.is_available()检查CUDA是否可用时,返回False。尽管电脑有GPU(执行nvidia-smi能够打印GPU信息),但无法利用其加速功能,非常无语。

以下是检查的步骤:

1. 确认PyTorch安装方式:

首先,需要确认PyTorch是以CPU版本还是GPU版本安装的。在自己创建的虚拟环境中,运行conda list命令查看已安装的PyTorch版本。如果发现安装的是CPU版本,需要将其卸载并重新安装GPU版本。

注意一个非常坑的地方:
用conda install安装的pytorch都是CPU版本的!!!

应该用pip install来安装

2. 卸载并且重新安装PyTorch:

如果发现安装的是CPU版本,需要卸载并重新安装PyTorch。强烈建议使用PIP安装方式,而不是通过conda安装。

进入虚拟环境,使用conda remove命令卸载PyTorch及相关包。例如:

bash 复制代码
conda remove pytorch torchvision torchaudio cudatoolkit

这将会卸载当前环境中安装的PyTorch、torchvision、torchaudio和cudatoolkit等包。

我换了另外一个版本安装

bash 复制代码
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

3. 检查版本匹配性:

如果安装了GPU版本的PyTorch,但仍然遇到torch.cuda.is_available()返回False的问题,可能是版本不匹配导致的。请确保安装的PyTorch版本与CUDA版本相匹配,避免版本不一致导致的兼容性问题。

相关推荐
工藤学编程5 分钟前
零基础学AI大模型之嵌入模型性能优化
人工智能·性能优化
狮子也疯狂20 分钟前
基于Django实现的智慧校园考试系统-自动组卷算法实现
python·算法·django
GIOTTO情21 分钟前
舆情处置的技术实现:Infoseek 如何用 AI 重构 “识别 - 研判 - 处置” 全链路
人工智能·重构
MaisieKim_27 分钟前
如何评估一个新产品机会是否值得投入
大数据·人工智能
一车小面包28 分钟前
空间智能是人工智能的下一个前沿领域
人工智能
wa的一声哭了1 小时前
hf中transformers库中generate的greedy_search
android·java·javascript·pytorch·深度学习·语言模型·transformer
deephub1 小时前
AI智能体落地:Agent-Assist vs 全自动化完整决策指南
人工智能·大语言模型·agent
云动雨颤1 小时前
爬虫是怎么工作的?从原理到用途
爬虫·python·数据挖掘
月下倩影时1 小时前
ROS1基础入门:从零搭建机器人通信系统(Python/C++)
c++·python·机器人
Danceful_YJ1 小时前
36.优化方法
人工智能·pytorch·python·深度学习·优化器算法